TASK FO INDEPENDENT CALIFORNIA IN ORG CALIFORNIA S	BEFORE THE RCE ON NEUROSCIENCE OF THE CITIZENS' OVERSIGHT COMMITTEE TO THE STITUTE FOR REGENERATIVE MEDICINE GANIZED PURSUANT TO THE GTEM CELL RESEARCH AND CURES ACT REGULAR MEETING
LOCATION:	VIA ZOOM
DATE:	MARCH 13, 2023 10 A.M.
REPORTER:	BETH C. DRAIN, CA CSR CSR. NO. 7152
FILE NO.:	2023-10

INDEX

ITEM DESCRIPTION	PAGE NO.
OPEN SESSION	
1. CALL TO ORDER	3
2. ROLL CALL	3
DISCUSSION ITEMS	
3. GENERAL DISCUSSION AND REVIEW	6
4. EXTERNAL EXPERT ON PSYCHIATRIC GENETICS: BENJAMIN NEALE, PH.D.	22
5. EXTERNAL EXPERT ON PSYCHIATRIC GENETICS: JONATHAN SEBAT, PH.D.	44
6. AGENDA ITEMS FOR NEXT MEETING	79
7. PUBLIC COMMENT	80
8. ADJOURNMENT	99

BETH C. DRAIN, CA CSR NO. 7152
MARCH 13, 2023; 10 A.M.
CHAIRMAN GOLDSTEIN: THANK YOU. ALL
RIGHT. LET ME CALL US TO ORDER, AND THE FIRST ORDER
OF BUSINESS IS FOR MARIANNE TO CALL THE ROLL.
MS. DEQUINA-VILLABLANCA: LEONDRA
CLARK-HARVEY. MARIA BONNEVILLE.
VICE CHAIR BONNEVILLE: PRESENT.
MS. DEQUINA-VILLABLANCA: MARK
FISCHER-COLBRIE.
DR. FISCHER-COLBRIE: HERE.
MS. DEQUINA-VILLABLANCA: FRED FISHER.
I'LL COME BACK TO HIM.
JUDY GASSON.
DR. GASSON: HERE.
MS. DEQUINA-VILLABLANCA: LARRY GOLDSTEIN.
CHAIRMAN GOLDSTEIN: I'M HERE.
MS. DEQUINA-VILLABLANCA: DAVID HIGGINS.
DR. HIGGINS: HERE.
MS. DEQUINA-VILLABLANCA: STEVE
JUELSGAARD.
MR. JUELSGAARD: HERE.
MS. DEQUINA-VILLABLANCA: PAT LEVITT.
DR. LEVITT: HERE.
MS. DEQUINA-VILLABLANCA: LAUREN
3

BETH C. DRAIN, CA CSR NO. 7152

1	MILLER-ROGEN. AL ROWLETT.
2	MR. ROWLETT: HERE.
3	MS. DEQUINA-VILLABLANCA: MARVIN SOUTHARD.
4	DR. SOUTHARD: PRESENT.
5	MS. DEQUINA-VILLABLANCA: JONATHAN THOMAS.
6	CHAIRMAN THOMAS: HERE.
7	MS. DEQUINA-VILLABLANCA: KEITH YAMAMOTO.
8	AND FRED FISHER. HE IS ON, BUT I KNOW HE
9	DOES HAVE CONNECTIVITY ISSUES, BUT HE IS ON.
10	CHAIRMAN GOLDSTEIN: OKAY. SO HERE'S WHAT
11	I'LL DO TO GET US STARTED. I WANT TO GIVE YOU A
12	QUICK SUMMARY OF THE LAST MEETING AND A SUMMARY OF A
13	PROPOSED PLAN FOR US MOVING FORWARD. AND THEN I'LL
14	TAKE THINGS SLIGHTLY OUT OF ORDER AND HAND THE
15	MICROPHONE OVER TO ROSA WHO'S GOT SORT OF A
16	BIRD'S-EYE VIEW OF A CONCEPT PLAN THAT SHE'S WORKING
17	ON THAT I THINK FITS PRETTY NICELY WITH THE
18	DIRECTION WE ARE GOING.
19	SO YOU MAY RECALL THAT AT THE LAST MEETING
20	WE AGREED TO FOCUS OUR INITIAL PLANNING EFFORTS ON
21	NEUROPSYCHIATRIC DISEASES, WHICH WE REALIZE FROM A
22	VERY HELPFUL PORTFOLIO ANALYSIS FROM THE CIRM TEAM
23	THAT WE BASICALLY HAVE NO INVESTMENT IN
24	NEUROPSYCHIATRIC DISORDERS, ALTHOUGH WE HAVE LOTS OF
25	INVESTMENTS IN DIFFERENT SORTS OF NEURODEGENERATIVE
	Л
	4

1	DISORDERS. AND SO THAT'S IN PART WHERE THE INITIAL
2	FOCUS ON NEUROPSYCHIATRIC DISORDERS COMES FROM, PLUS
3	THE SENSE OF SOME OF US THAT IT MAY BE A GOOD,
4	MANIPULABLE SYSTEM TO DEVELOP FOR UNDERSTANDING
5	MECHANISM AND PERHAPS FOR DEVELOPING THERAPIES.
6	MOVING FORWARD, WHAT I'M GOING TO SUGGEST
7	THAT WE DO IS DO A BIT OF EDUCATING OURSELVES ABOUT
8	WHAT IS AND ISN'T KNOWN IN THE AREA AND LET THAT
9	INFORM OUR DEVELOPMENT OF SUGGESTED CONCEPT PLANS
10	AND WHERE WE THINK DEVELOPMENT EFFORTS OUGHT TO BE
11	FOCUSED.
12	THAT WILL GIVE US FIVE OR SIX MEETINGS
13	PROBABLY. I'LL SEND OUT A PROPOSED SCHEDULE
14	SHORTLY. AND ONE OF THE IDEAS WE HAVE MOVING
15	FORWARD IS THAT WE SHOULD BE LOOKING AT HELPING ROSA
16	OR VICE PRESIDENT CANET-AVILES, AS I'VE JUST
17	LEARNED, TO PREPARE A CONCEPT PLAN BASED ON OUR
18	EDUCATION AND DELIBERATIONS THAT OCCUR BETWEEN NOW
19	AND JUNE.
20	SO UNLESS THERE ARE QUESTIONS, I'LL TAKE
21	THOSE NOW IF THERE ARE ANY. I'LL ALSO POINT OUT
22	THAT I SAW DR. NEALE HAS JOINED US ALREADY. THANK
23	YOU FOR PARTICIPATING, DR. NEALE. AND I DON'T KNOW
24	IF DR. SEBAT IS WITH US YET OR NOT. HE MIGHT BE ONE
25	OF THOSE PHONE NUMBERS. I CAN'T TELL. BUT THEY
	5

1	WILL BE GIVING US SHORT PRESENTATIONS THIS MORNING
2	WHICH WE'LL GET TO SHORTLY. SO UNLESS THERE'S
3	ANYTHING BURNING, LET ME TURN THE MICROPHONE TO OVER
4	ROSA TO LAY OUT A HIGH LEVEL SUMMARY OF A PROPOSED
5	CONCEPT PLAN THAT IS IN DEVELOPMENT.
6	DR. CANET-AVILES: THANK YOU, DR.
7	GOLDSTEIN. I AM GOING TO SEE CAN YOU SEE MY FULL
8	SCREEN?
9	CHAIRMAN GOLDSTEIN: YEP.
10	DR. CANET-AVILES: WONDERFUL.
11	SO AS DR. GOLDSTEIN MENTIONED, THE STAFF
12	AT CIRM HAS BEEN WORKING ON WHAT COULD BE A
13	BIRD'S-EYE VIEW OF A CONCEPT THAT COULD FIT WELL
14	WITH WHAT THE BOARD IS THINKING, IS CURRENTLY
15	THINKING, COULD BE. SO I AM GOING TO GO OVER A
16	LITTLE BIT OF BACKGROUND, HISTORICAL BACKGROUND OF
17	WHERE DOES THAT COME FROM? I'LL DO A LITTLE BIT
18	OF I'LL SHOW A PORTFOLIO ANALYSIS THAT JUSTIFIES
19	WHAT WE ARE THINKING. AND I WILL GO INTO A VERY
20	HIGH LEVEL OVERVIEW OF THE PLAN.
21	SO THIS SLIDE PROVIDES A FRAME FOR THE
22	BACKGROUND AND THE RATIONALE FOR THE
23	CONCEPTUALIZATION OF THIS POTENTIAL CONCEPT. THE
24	VISION FOR THIS NEURODISCOVERY STRATEGY HAS BEEN
25	INFORMED BY MULTIPLE LAYERS OF STAKEHOLDER

6

1	DISCUSSIONS AND INPUT THAT STARTED EVEN PRIOR TO THE
2	PASSAGE OF PROPOSITION 14 OVER THE PAST TWO YEARS AS
3	OUTLINED IN THIS TIME LINE CHART.
4	THERE ARE FOUR KEY TAKEAWAYS OUT OF ALL
5	THESE MEETINGS HIGH LEVEL. THERE ARE FOUR KEY
6	TAKEAWAYS I'M GOING TO GO OVER IN THE NEXT SLIDE
7	THAT LEAD TO WHERE WE ARE TODAY, WHICH IS THE
8	THINKING ABOUT THE DEVELOPMENT OF THIS CONCEPT.
9	THE FIRST THREE TAKEAWAYS WERE DIRECTLY
10	CAPTURED WITHIN OUR FIRST STRATEGIC THEME OF THE
11	ADVANCE WORLD-CLASS SCIENCE. SO IN THE STRATEGIC
12	THEME FOR ADVANCING WORLD-CLASS SCIENCE, WE ARE
13	CALLING FOR A CONSORTIUM APPROACH THAT WILL ALLOW US
14	TO LEVERAGE GENOMICS, BIG DATA, NOVEL STEM CELL
15	MODELS, PATIENT DATA AND COLLABORATION, PROMOTE
16	KNOWLEDGE SHARING, AND EXPAND SHAREABLE RESOURCES.
17	NOW, THE SCIENTIFIC ADVISORY BOARD ALSO
18	PROVIDED FEEDBACK WITH REGARDS TO THE DIRECTIONS IN
19	WHICH THE NEURO STRATEGY SHOULD GO BY POINTING TO
20	THE EXISTENCE OF STILL MAJOR GAPS IN OUR
21	UNDERSTANDING OF THE MECHANISMS UNDERLYING NORMAL
22	AND DISEASE PROCESSES IN THE BRAIN. THIS IS NOT TO
23	SAY THAT THERE ARE NOT OTHER IMPORTANT GAPS TO
24	TACKLE IN THE OVERALL NEURO STRATEGY; BUT FOR THE
25	FIRST PHASE OF THE NEURO STRATEGY, THE MAIN FOCUS IN

133 HENNA COURT, SANDPOINT, IDAHO 83864 208-255-5453 208-920-3543 DRAIBE@HOTMAIL.COM

7

1	OUR VIEW AT THE LEVEL OF DISCOVERY SHOULD BE AROUND
2	FOUNDATIONAL WORK AND UNDERSTANDING NORMAL AND
3	DISEASE MECHANISMS. AND IMPORTANTLY, THE APPROACH
4	SHOULD BE BY LEVERAGING ALL THE PIECES THAT WE ARE
5	PUTTING TOGETHER THROUGH THE ADVANCE WORLD-CLASS
6	SCIENCE.
7	NOW, HOW MUCH OF THIS TYPE OF RESEARCH,
8	UNDERSTANDING OF THE MECHANISMS UNDERLYING NORMAL
9	AND DISEASE PROCESSES IN THE BRAIN, INCLUDING
10	NEUROPSYCHIATRIC, HAS CIRM FUNDED SO FAR. THIS IS
11	LIKE WE CAN SEE THAT WE FUNDED AT THE DISCOVERY
12	LEVEL UP TO AROUND \$1.1 BILLION IN DISCOVERY. SO OF
13	THAT, HOW MUCH IS NEURO AND HOW MUCH IS MECHANISMS
14	OF DISEASE? FOR THAT, WE ARE PROVIDING A COUPLE
15	MORE SLIDES.
16	AS YOU CAN SEE, OF THE INVESTMENTS THAT WE
17	HAVE MADE IN DISCOVERY, WE HAVE A LARGE PERCENTAGE,
18	ABOUT 33 PERCENT, OF AWARDS THAT PERTAIN TO THE
19	NEUROSCIENCE PORTFOLIO. AS YOU RECALL, MY
20	COLLEAGUE, ABLA CREASEY, THE OTHER DAY PRESENTED ON
21	THE TRAN AND CLIN. THIS IS FOR DISCOVERY. OF THOSE
22	33 PERCENT, THIS SLIDE SHOWS HOW ARE THEY DIVIDED IN
23	THE DIFFERENT ETIOLOGIES. 37 PERCENT OF THE FUNDED
24	AWARDS HAVE BEEN FOCUSED ON NEURODEGENERATIVE
25	DISEASES. AND THEN WE HAVE ABOUT 11 PERCENT OF EYE

8

1	DISEASES; 7 PERCENT BRAIN CANCER; NEUROTRAUMA, 17
2	PERCENT; NEURODEVELOPMENTAL, 12 PERCENT; AND THEN
3	OTHER, WHICH INCLUDES A NUMBER OF PROJECTS IN EARLY
4	STAGE IN BASIC RESEARCH GRANTS, THAT SOME OF THEM
5	ARE JUST FOCUSING ON STUDYING DIFFERENTIATION OF
6	STEM CELLS OR LIKE ZIKA VIRUS OR NEUROPATHY OR SOME
7	PEDIATRIC METABOLIC DISORDERS THAT WE PUT THEM IN
8	THE 16 PERCENT.
9	NOW, IMPORTANTLY, FOR TODAY'S TASK FORCE
10	DISCUSSION, IT'S IMPORTANT TO REMARK THAT CIRM HAS
11	NOT REALLY FUNDED MUCH RESEARCH IN NEUROPSYCHIATRIC
12	DISEASES, SUCH AS SCHIZOPHRENIA, ADDICTION, BIPOLAR,
13	LARGELY BECAUSE WE HAVE NOT RECEIVED MANY
14	APPLICATIONS. WE HAVE A COUPLE OF WE HAVE SOME
15	RESEARCH AROUND SCHIZOPHRENIA THAT CAME OUT OF DR.
16	FRED GAGES'S LAB WITH KRISTIN BRENNAND, WHO'S NOW AT
17	THE BROAD SORRY AT YALE, BUT WE HAVE NOT
18	FUNDED MUCH NEUROPSYCHIATRIC RESEARCH.
19	NOW, ONE COULD EXPECT WITH SUCH A LARGE
20	PERCENTAGE OF RESEARCH FOCUSED ON NEURO THAT WE
21	WOULD HAVE MORE CURES. ONE OF THE ISSUES, AND THIS
22	RELATES TO THE SCIENTIFIC ADVISORY BOARD
23	RECOMMENDATION, IS THE LACK OF OUR UNDERSTANDING OF
24	THE MECHANISMS UNDERLYING THOSE DISEASES AND
25	PROCESSES IN THE BRAIN. AND IN ORDER TO HIGHLIGHT

9

1	THIS, OF ALL THE GRANTS, A VERY SMALL PERCENTAGE,
2	ABOUT 4 PERCENT OF THE GRANTS HAVE BEEN FOCUSED SO
3	FAR IN NEURODISEASE MECHANISMS. THIS CLEARLY POINTS
4	OUT TO A GAP IN OUR FUNDING THAT IS ESSENTIAL AND
5	MIGHT BE TO FULFILL CIRM'S MISSION.
6	SO THE NEXT SLIDE IS GOING TO PROVIDE AN
7	OVERVIEW OF THE POTENTIAL FORMAT FOR DRIVING A
8	NEURO-BASED DISCOVERY PROGRAM THAT COULD ACTUALLY
9	PUT TOGETHER ALL THE ELEMENTS THAT WE ARE PROPOSING
10	AND THAT ALSO WE ARE FUNDING THROUGH THE FIRST THEME
11	OF OUR STRATEGIC PLAN.
12	SO THIS ULTIMATELY COULD BE A MULTILAYERED
13	PROPOSAL THAT PULLS ALL EXISTING PIECES TOGETHER IN
14	SERVICE OF THE OVERALL NEURO STRATEGY AND IS
15	CONSISTENT WITH THE FEEDBACK RECEIVED AND
16	IMPORTANTLY WITH PROPOSITION 14'S MANDATE. THE GOAL
17	COULD BE TO DEVELOP A FRAMEWORK THAT COULD HELP US
18	ACCELERATE THE PACE OF DISCOVERY AND INFORM THE
19	PATHS TO CURE NEURODISEASES WITH AN INITIAL FOCUS IN
20	FINDING NEW CLUES THROUGH THESE NEURODISCOVERY
21	MULTIDISCIPLINARY TEAMS THAT WE'LL TALK ABOUT IN THE
22	NEXT SLIDES AND THAT LEVERAGE THE WORK FROM OTHER
23	CONSORTIA.
24	SO WE COULD HAVE THESE NEURO
25	MULTIDISCIPLINARY TEAMS THAT COULD GENERATE DATA AND
	10

1	COULD BE ABLE TO LEVERAGE DATA FROM OTHER CONSORTIA.
2	AND IN ORDER MAXIMIZE THE INVESTMENT, WE COULD DO
3	THESE THROUGH A DATA COORDINATING AND MANAGEMENT
4	CENTER THAT WE COULD ALSO FUND THROUGH CIRM. AND WE
5	COULD ALSO LEVERAGE SO THIS DATA COORDINATING AND
6	MANAGEMENT CENTER COULD HAVE A KNOWLEDGE PLATFORM
7	AND COULD ALLOW US TO LEVERAGE THE DATA THAT COMES
8	FROM THE MULTIDISCIPLINARY TEAMS TOGETHER WITH THE
9	EXTERNAL CONSORTIA DATA FROM OTHER PLATFORMS.
10	AND EVENTUALLY WE COULD ALSO COORDINATE
11	AND LEVERAGE THE SHARED RESOURCE LAB MODELS, THE
12	NEUROSCIENCE AND NEURO MODELS LIKE IPS MODELS.
13	ORGANOID MODELS, AS YOU KNOW, YOU APPROVED A CONCEPT
14	THAT WE ARE GOING TO LAUNCH SHORTLY THE RFA'S FOR.
15	SO WE COULD LEVERAGE THOSE MODELS AS WELL. AND WE
16	COULD ALSO LEVERAGE FUNDING FROM OUR DISCOVERY
17	PROGRAMS, AND WE COULD PULL ALSO FROM THE TRAINING
18	AND EDUCATION WORKFORCE DEVELOPMENT TO FEED INTO
19	THIS KIND OF PROGRAM.
20	SO THE CONNECTION AND THE VISION OF THE
21	NEURODISCOVERY AS PART OF THE NEURO STRATEGY AND
22	FEEDING WITH THIS DATA COORDINATING AND MANAGEMENT
23	CENTER CONSORTIA COLLABORATIVE ECOSYSTEM AND
24	COMPETING COMPETENCY HUBS COULD COORDINATE A SERIES
25	OF ACTIVITIES THAT COULD END UP IN THIS

11

1	COLLABORATIVE OPEN SCIENCE COMMUNITY WITH ULTIMATELY
2	THE AIM COULD BE TO IDENTIFY, THROUGH THE DISCOVERY
3	OF NEW MECHANISMS OF DISEASE, IDENTIFY AND VALIDATE
4	THE MOST PROMISING BIOLOGICAL TARGETS FOR
5	THERAPEUTICS. SO THESE ARE ALIGNED WITH FEEDING
6	INTO OUR TRANSLATIONAL AND OUR CLINICAL PIPELINE.
7	NOW, WHAT COULD BE THE OBJECTIVES OF THESE
8	NEURODISCOVERY MULTIDISCIPLINARY TEAMS CONCEPT?
9	THIS RFA, THIS COULD BE TO START IMPLEMENTING THIS
10	STRATEGY. WE COULD HAVE FIVE OBJECTIVES. THE FIRST
11	WOULD BE TO FOCUS ON FOUNDATIONAL BIOLOGY TO ADVANCE
12	THE FUNDAMENTAL UNDERSTANDING OF BIOLOGY ACROSS
13	NEUROPSYCHIATRIC. IT LOOKS LIKE AT THE BEGINNING WE
14	HAD NEURODEGENERATIVE, NEUROPSYCHIATRIC,
15	NEURODEVELOPMENTAL DISEASES. THE DISCUSSIONS FROM
16	THE TASK FORCE ARE POINTING OUT THAT WE ARE GOING TO
17	BE FOCUSED ON NEUROPSYCHIATRIC. SO THE FOCUS COULD
18	BE UNDERSTANDING THE FUNDAMENTAL SCIENCE OF
19	NEUROPSYCHIATRIC DISORDERS THROUGH FOUNDATIONAL
20	SYSTEMS TO EXPLORE NEW PATHWAYS, TARGETS,
21	BIOMARKERS, AND ALSO TO RECONCEPTUALIZE NEURODISEASE
22	AS A BROAD DISEASE CLASS INVOLVING MORE THAN THE
23	BRAIN AND NEURONS BECAUSE THERE ARE OTHER SYSTEMS
24	LIKE THE IMMUNE SYSTEM, THE GUT MICROBIOME SYSTEM
25	INVOLVED IN THIS.

12

1	THIS IS A COLLABORATION. WE WOULD LIKE TO
2	INCENTIVIZE ANOTHER OBJECTIVE COULD BE TO
3	INCENTIVIZE AND CATALYZE AN OPEN COLLABORATIVE
4	MULTIDISCIPLINARY SCIENCE THAT ALSO COLLABORATES
5	WITH THE DATA ECOSYSTEM. AND THIS COULD BE
6	INTEGRALLY DEPENDENT ON A DATA INFRASTRUCTURE, DATA
7	COORDINATING AND MANAGEMENT CENTER CONCEPT, AND THE
8	DATA SHARING AND MANAGEMENT IMPLEMENTATION THAT WE
9	ARE DOING.
10	THE THIRD ONE COULD BE TO MOTIVATE AND
11	SUPPORT INNOVATIVE, BOLD, TRANSFORMATIVE NEW IDEAS
12	AND TOOLS THAT ADDRESS FUNDAMENTAL CHALLENGES IN CNS
13	DISEASE BIOLOGY. WE ALL KNOW ABOUT OPTIGENETICS,
14	FOR EXAMPLE, BUT HOW ABOUT OTHER TECHNOLOGIES THAT
15	WE COULD SUPPORT THE DEVELOPMENT THAT COULD ACTUALLY
16	BE LEVERAGED WITH THIS KIND OF EFFORT.
17	AND LASTLY SORRY THE FOURTH IS TO
18	ATTRACT NEW TALENT AND EXPERTISE INTO THE FIELDS AND
19	ALSO TO ATTRACT DIFFERENT MULTIDISCIPLINARY TYPE OF
20	EFFORTS. SO WE NOT ONLY WANT STEM CELL SCIENTISTS,
21	BUT WE WOULD LIKE TO HAVE CLINICIANS,
22	NEURO-IMMUNOLOGISTS, COMPUTATIONAL BIOLOGISTS. THIS
23	SHOULD BE THE KIND OF EXPERTISE THAT WE WANT, WHICH
24	IS IN THE SECOND POINT AS MULTIDISCIPLINARY, BUT
25	ALSO NEW TALENT.

13

AND THEN FINALLY, LEVERAGING AND
CONNECTING WITH CIRM'S EXISTING INFRASTRUCTURE OF
PROGRAMS, WHICH IS WHAT I WAS MENTIONING BEFORE IN
TERMS OF LEVERAGING THE SHARED RESOURCE LABS,
LEVERAGING THE DISCOVERY RESEARCH THAT WE HAVE,
LEVERAGING EDUCATION, THE DATA COORDINATING
MANAGEMENT, ET CETERA. SO I THINK IT'S IMPORTANT TO
HAVE THIS HOLISTIC ECOSYSTEM OVERVIEW AS WE ARE
PROPOSING THIS NEW CONCEPT, HOW WILL IT PLAY WITH
EVERYTHING ELSE.
SO THE STRUCTURE THAT WE ARE THINKING
ABOUT FOR THIS NEW CONCEPT COULD BE TO HAVE A FIRST
PHASE THAT COULD HAVE A PLANNING AWARD. AND THE
GOAL COULD BE TO GATHER IN THE FIRST SIX MONTHS OF
THESE AWARDS TO GATHER THE TEAM AND DEVELOP THE
PROPOSAL. THE OBJECTIVE OF THIS PLANNING AWARD IS
TO ENABLE THE PRINCIPAL INVESTIGATOR TO RECRUIT A
MULTIDISCIPLINARY TEAM AND TO UNLEASH THE TEAM TO
DEVELOP THE CONTENT MANAGEMENT AND ADMINISTRATION OF
THE PROPOSED MULTIDISCIPLINARY NEURODISCOVERY
RESEARCH.
BUT IMPORTANTLY, SOMETHING THAT WE WANTED
TO MAKE SURE, BECAUSE THIS WOULD ALL BE COMING AS WE
ARE DEVELOPING DATA COORDINATING AND MANAGEMENT
CENTER, IS THAT THESE TEAMS COULD BE REACHING OUT TO
14

1	OTHER GROUPS AND CONSORTIA THAT COULD BE EITHER
2	SUPPLEMENTING THEIR RESEARCH OR COLLABORATING. AND
3	THEY COULD PROPOSE THAT IN THEIR AWARD, WHICH
4	CONSORTIA COULD THEY BE ACTUALLY TAPPING INTO SO
5	THAT CIRM CAN START DISCUSSING WITH THOSE CONSORTIA
6	SO WE CAN BRING THEM TO THE TABLE AS THE PROJECT IS
7	BEING DEVELOPED SO WE ARE READY FOR THE TIME OF
8	IMPLEMENTATION.
9	THE SECOND PHASE OF THE RESEARCH AWARD
10	COULD BE PROJECT IMPLEMENTATION AND COLLABORATION.
11	AND THIS IS SOMETHING THAT NEEDS TO BE FLESHED OUT
12	THE TIMING, ET CETERA, BUT OVERALL THIS IS A
13	POTENTIAL STRUCTURE FOR THIS NETWORK THAT WE ARE
14	THINKING.
15	AND WITH THAT, I WOULD LIKE TO THANK DR.
16	GOLDSTEIN FOR HIS INVALUABLE INPUT. AND I'D LIKE TO
17	THANK THE MEMBERS OF THE BOARD FOR ALLOWING ME TO
18	PRESENT CIRM'S THINKING AROUND THIS. THANK YOU.
19	CHAIRMAN GOLDSTEIN: EXCELLENT, ROSA.
20	THANK YOU VERY MUCH.
21	I GUESS I HAVE A COUPLE OF QUESTIONS, AND
22	THEN I'LL THROW IT OPEN TO THE GROUP FOR QUESTIONS
23	AND DISCUSSION.
24	I THINK ONE OF THE QUESTIONS IS
25	HISTORICAL. WHEN WE SAY WE HAVEN'T FUNDED ANY
	15

NEUROPSYCHIATRIC APPLICATIONS, IS THAT BECAUSE WE
DON'T GET ANY NEUROPSYCHIATRIC APPLICATIONS OR
BECAUSE THEY HAVEN'T FARED WELL IN COMPETITION WITH
NEURODEGENERATIVE OR NEURODEVELOPMENTAL OR WHATEVER?
DR. CANET-AVILES: WE HAVEN'T GOTTEN MANY
ACTUALLY IN PROPORTION TO THE REST OF TYPE OF
APPLICATIONS, BUT WE HAVE ALSO NOT BEEN CALLING
SPECIFICALLY FOR THEM. SO I THINK THAT WHEN WE
FINALIZED THE PORTFOLIO, WE WERE CALLING FOR
MECHANISMS OF STEM CELL AND REGENERATIVE MEDICINE
PLURIPOTENCY AND ALL OF THIS, BUT WE WERE NOT
CALLING SPECIFICALLY FOR DISEASE MECHANISMS AND NOT
SPECIFICALLY FOR PSYCHIATRIC.
SO ON PSYCHIATRIC, THE MODELING HAS BEEN
MORE CHALLENGING. SO THERE WERE LESS APPLICATIONS.
CHAIRMAN GOLDSTEIN: OKAY. GOOD. SO
WOULD YOU RECOMMEND THAT WE CALL OUT A SEPARATE CALL
FOR PROPOSALS FOR NEUROPSYCHIATRIC, OR SHOULD WE
WAIT AND SEE WHETHER THEY OCCUPY A SIGNIFICANT
FRACTION OF A GENERAL CALL?
AND I GUESS THE RELATED QUESTION IS IS
THERE SOME WAY TO ADVERTISE THAT WE ARE INTERESTED
IN GETTING THESE APPLICATIONS, AND WE THINK THAT THE
TIME IS RIGHT TO MAKE AN INVESTMENT HERE?
DR. CANET-AVILES: SO THANK YOU, DR.
16

1	GOLDSTEIN. TO THE FIRST QUESTION, I THINK THE KEY
2	IS TO CALL OUT FOR A SPECIFIC, AND THAT IS LINKED TO
3	THE ANSWER TO THE SECOND QUESTION, THAT EFFORTS CAN
4	BE MADE. IN FACT, TODAY I HAPPENED TO BE AT THE
5	NEUROSCIENCE FORUM OF THE NATIONAL ACADEMIES. AND
6	THEY ARE VERY INTERESTED TO HEAR WHAT CIRM IS DOING.
7	SO ONCE WE HAVE A PLAN WE CAN PRESENT, AND THERE ARE
8	MANY DIVERSE STAKEHOLDERS LIKE THE NATIONAL
9	INSTITUTES OF MENTAL HEALTH AND OTHERS THAT COULD BE
10	INTERESTING TO SEE WHAT ARE WE DOING AND HOW CAN WE
11	COLLABORATE AND LEVERAGE OUR EFFORTS.
12	CHAIRMAN GOLDSTEIN: YEAH. THAT'S REALLY
13	GOOD NEWS BECAUSE I THINK, IN ADDITION TO DEVELOPING
14	MODELS, THERE HAS BEEN INTEREST EXPRESSED TO ME OFF
15	LINE FROM A GROUP AT UCLA AND UCSF THAT, IN ADDITION
16	TO DEVELOPING CELLULAR MODELS TO STUDY MECHANISM,
17	THEIR VIEW IS THAT THE STUDY OF DIFFERENT
18	POPULATIONS FOR GENETIC ELEMENTS THAT MAY DRIVE
19	DISEASE IS REALLY NOT YET BROAD ENOUGH. AND IT
20	MIGHT BE THE CASE THAT WE WOULD WANT TO ENGAGE IN
21	SOME SORT OF COLLABORATION WITH NIMH AND OTHER
22	ORGANIZATIONS TRYING TO MAKE PROGRESS IN THIS RATHER
23	CHALLENGING AREA. SO
24	DR. CANET-AVILES: EXACTLY. AND PROBABLY
25	DR. NEALE MIGHT TALK ABOUT THAT. I WAS TALKING TO
	17

1	DR. HYMAN HERE AT THE NEUROSCIENCE FORUM. SO, YEAH,
2	HE MIGHT BE SPEAKING TO THAT.
3	CHAIRMAN GOLDSTEIN: OTHER QUESTIONS OR
4	DISCUSSION BEFORE WE BRING IN OUR GUESTS? J.T.
5	CHAIRMAN THOMAS: ROSA, THANK YOU VERY
6	MUCH FOR THAT EXCELLENT PRESENTATION AND CONCEPTUAL
7	GAME PLAN HERE GOING FORWARD. I THINK IT MAKES A
8	LOT OF SENSE.
9	I HAVE A QUESTION THAT'S A BIT OF A
10	FOLLOW-ON TO WHAT LARRY JUST ASKED, WHICH IS, AND I
11	TOO HEARD CONVERSATIONS INVOLVING UCLA AND UCSF, BUT
12	AS A GENERAL MATTER, DO WE HAVE A SENSE FOR HOW MUCH
13	RESEARCH IN THE STATE, THROUGHOUT THE STATE, BESIDES
14	THOSE INSTITUTIONS IS CURRENTLY BEING DONE IN THIS
15	SPACE AT THIS POINT?
16	DR. CANET-AVILES: WE HAVE A SENSE, J.T.
17	I COULD ACTUALLY BRING BACK THE DATA. I DON'T HAVE
18	RIGHT IT NOW ON THE TIP OF MY HEAD, BUT I WILL SEND
19	IT BACK. WE DO HAVE BECAUSE WE HAVE A LOT OF
20	CONSULTATIONS AT THE EARLY DISCOVERY RESEARCH OF
21	PEOPLE ASKING BESIDES NEUROPSYCHIATRIC,
22	NEURODEVELOPMENTAL GO TOGETHER AND THERE'S A LOT OR
23	RESEARCH AROUND NEURODEVELOPMENTAL THAT COULD
24	ACTUALLY ALSO BE PART OF THE SCOPE OF THIS.
25	WHEN WE THINK ABOUT ADDICTION AS WELL,
	18

1	IT'S ALSO MODELING, AND WORK AROUND THAT COULD BE
2	PART OF WHAT WE WOULD BE FUNDING. SO YEAH.
3	CHAIRMAN THOMAS: THANK YOU.
4	CHAIRMAN GOLDSTEIN: NEXT UP, PAT.
5	DR. LEVITT: THANKS, ROSA. VERY NICE AND
6	MULTIDISCIPLINARY PLAN AND TEAM FORGING A GREAT
7	IDEA.
8	I GUESS I HAVE TWO COMMENTS. ONE, I GUESS
9	IT'S OBVIOUS TO EVERYBODY THAT THE FRAMEWORK AROUND
10	WHICH AN RFA WOULD BE ISSUED BASED ON THE CHARGE
11	THAT CIRM HAS IN TERMS OF WHAT IT WILL FUND AND IT
12	WON'T FUND WILL BE VERY IMPORTANT BECAUSE THERE'S A
13	LOT OF WORK IN THIS SPACE THAT WOULDN'T NECESSARILY
14	FALL IN THE RUBRIC OF SUPPORT BY CIRM. AND SO WE
15	PROBABLY A GREAT IDEA, THE QUESTION ABOUT HOW
16	MUCH THERE'S A LOT OF RESEARCH GOING ON IN THE
17	STATE OF CALIFORNIA. SOME OF IT IS NEUROIMAGING,
18	SOME OF IT IS GENETICS THAT LIKELY WOULDN'T FALL
19	INTO THE RUBRIC. I THINK THAT WOULD BE OPEN FOR
20	DISCUSSION, I GUESS, TO MAKE SURE THAT IT'S ALIGNED
21	WITH THE CHARGES OVERALL.
22	THE SECOND COMMENT IS THAT NIH NOW HAS
23	ISSUED AN EDICT TO ALL OF US WHO ARE FUNDED BY NIH
24	ABOUT DATA SHARING AND DATA MANAGEMENT. AND I THINK
25	WE CAN PIGGYBACK ON THAT BECAUSE IT'S

1	EXTRAORDINARILY COMPREHENSIVE AND HIGH EXPECTATIONS
2	ON THE PART OF NIH TO THOSE WHO ARE RECEIVING
3	FUNDING ABOUT THIS AREA WHICH WE ALL AGREE IS
4	EXTREMELY IMPORTANT. AND THERE'S SIX COMPONENTS TO
5	THE REQUIREMENTS NOW.
6	IT'S NOT GOOD ENOUGH TO JUST SAY I'M GOING
7	TO SHARE IT ONCE I LIKE IT WILL BE SHARED IN A
8	PUBLICATION. SO I THINK WE CAN LOOK AT THAT AND SEE
9	HOW WE CAN PIGGYBACK RIGHT ONTO THAT, WHICH WOULD
10	SAVE TIME.
11	DR. CANET-AVILES: ACTUALLY, DR. LEVITT,
12	WE'VE ACTUALLY WE PRECEDED THE NIH IN THAT WE
13	HAVE BEEN IMPLEMENTING THE DATA SHARING AND
14	MANAGEMENT PLANS. THE NIH IS A MUCH LARGER
15	ORGANIZATION. SO WHAT WE HAVE DONE IS WE LOOKED AT
16	THEIR ELEMENTS, AND WE IMPLEMENTED THAT, WE'VE
17	REVISED IT. WE HAVE DATA ADVISORS, AND WE HAVE BEEN
18	WORKING VERY CLOSELY WITH THOSE ADVISORS AND
19	CONSULTANTS IN THE IMPLEMENTATION OF THIS IN OUR
20	DISCOVERY PROGRAMS. SO THAT COULD BE FEEDING INTO
21	THE NEXT PHASE. IT'S ALWAYS STAGED. SO IF WE HAVE
22	THIS MULTIDISCIPLINARY NEURODISCOVERY CONCEPT, THAT
23	COULD BE THEN IMPLEMENTING THOSE DATA SHARING AND
24	MANAGEMENT PLANS THAT WE HAVE.
25	GREAT POINT. AND THANK YOU FOR BRINGING
	20

1	IT UP BECAUSE IT HIGHLIGHTS HOW CIRM STAFF HAS BEEN
2	WORKING VERY HARD ON THIS. THANK YOU.
3	DR. LEVITT: THAT'S GREAT. THANK YOU.
4	CHAIRMAN GOLDSTEIN: GREAT. ANY OTHER
5	QUESTIONS BEFORE WE GO TO DRS. NEALE AND SEBAT?
6	WE'LL HAVE PLENTY OF TIME FOR DISCUSSION AT THE END,
7	I HOPE, AS WELL. SEEING NOTHING, LET ME GIVE A
8	QUICK INTRO TO BOTH SPEAKERS.
9	DR. NEALE IS CO-DIRECTOR OF THE PROGRAM IN
10	MEDICAL AND POPULATION GENETICS AT THE BROAD
11	INSTITUTE. HE'S ALSO DIRECTOR OF GENETICS AT THE
12	STANLEY CENTER FOR PSYCHIATRIC RESEARCH. HE'S AN
13	ASSOCIATE PROFESSOR IN THE ANALYTIC AND
14	TRANSLATIONAL GENETICS UNIT AT MASS GENERAL WHERE HE
15	DIRECTS THE GENOMICS OF PUBLIC HEALTH INITIATIVE.
16	HE'S ALSO AN ASSOCIATE PROCESSOR OF MEDICINE AT
17	HARVARD MEDICAL SCHOOL. AND HE'S WORKING ON TRYING
18	TO UNDERSTAND THE GENETICS OF COMMON COMPLEX HUMAN
19	DISEASES. YOU CAN SEE HOW THIS IS DIRECTLY
20	RELEVANT.
21	DR. JONATHAN SEBAT, WHO WE'LL HEAR FROM
22	SECOND, IS THE DIRECTOR OF THE BEYSTER CENTER FOR
23	PSYCHIATRIC GENOMICS AND PROFESSOR OF PSYCHIATRY AND
24	CELLULAR AND MOLECULAR MEDICINE AT UC SAN DIEGO.
25	JONATHAN'S AN EXPERT IN THE GENETIC ANALYSIS OF

21

1	MAJOR MENTAL HEALTH DISORDERS BY DNA SEQUENCING.
2	SO BOTH INDIVIDUALS, AS YOU WILL SEE, ARE
3	VERY ACCOMPLISHED IN AREAS RELATED TO THE GENETICS
4	AND GENOMICS OF THESE VERY COMPLICATED DISEASES.
5	AND I'LL JUST MAKE AN EDITORIAL COMMENT IN PASSING,
6	WHICH IS IF ONE WANTS TO DEVELOP STEM CELL-BASED
7	MODELS OF NEURONS AND GLIA THAT POTENTIALLY HAVE
8	CHANGES LEADING TO NEUROPSYCHIATRIC DISEASE, FINDING
9	GENES THAT ARE ALTERED IN DISEASE POPULATIONS OR
10	FAMILIES WILL BE REALLY KEY TO BEING ABLE TO MAKE
11	THAT STEP TECHNOLOGICALLY.
12	SO WITHOUT ANY MORE INTRO, LET ME TURN THE
13	PODIUM OVER TO DR. BENJAMIN NEALE. DR. NEALE,
14	PLEASE.
15	DR. NEALE: THANK YOU, DR. GOLDSTEIN.
16	I'VE GOT A FEW SLIDES TO SHARE. I'LL BE TALKING
17	ABOUT A NUMBER OF PIECES OF WORK AND TRY AND GIVE A
18	BIT OF AN OVERALL VIEW AND FLAVOR OF WHAT'S GOING ON
19	IN THE COMMUNITY MORE BROADLY.
20	DOWN AT THE BOTTOM ARE THE KIND OF THREE
21	MOST RECENT PROBABLY RELEVANT CITATIONS, AND THERE
22	ARE A FEW OTHER CITATIONS THAT I'LL TOUCH ON AS WE
23	GO. BUT, YEAH, LET'S DIG IN TO WHERE WE ARE IN
24	UNDERSTANDING SCHIZOPHRENIA, BIPOLAR DISORDER FROM A
25	GENETIC ANALYSIS POINT OF VIEW.

22

1	SO AS YOU MENTIONED, I DIRECT THE GENETICS
2	PROGRAM AT THE STANLEY CENTER. I WON'T READ THE
3	MISSION OF THE STANLEY CENTER, BUT I WILL JUST SAY
4	THAT THE MISSION OF THE STANLEY CENTER IS EXTREMELY
5	ALIGNED TO THE GOALS THAT ARE BEING ARTICULATED HERE
6	FOR THE KIND OF NEURO-FOCUSED EFFORTS FROM CIRM.
7	AND WE FIRMLY BELIEVE IN GENETICS AS A KIND OF
8	POWERFUL STARTING POINT FOR BIOLOGICAL INQUIRY,
9	PARTICULARLY WITH THE DEVELOPMENT AND EVOLUTION OF
10	GENOMIC PROFILING TECHNOLOGIES OVER THE COURSE OF
11	THE LAST, SAY, 10 TO 15 YEARS.
12	SO WHAT ARE THEY? WHAT ARE THOSE
13	TECHNOLOGIES THAT REALLY LIVE UNDERNEATH THE STUDIES
14	THAT I'M GOING TO DESCRIBE? THERE ARE MAINLY, I
15	WOULD SAY, THREE PARADIGMS BEING PURSUED IN THE
16	GENETIC ANALYSIS OF ANY DISEASE, BUT PARTICULARLY
17	FOR SCHIZOPHRENIA AND BIPOLAR DISORDER. THERE ARE
18	GENOTYPING ARRAYS ON THE LEFT-HAND SIDE, EXOME
19	SEQUENCING AND GENOME SEQUENCING IN THE MIDDLE. AND
20	THEN ON THE RIGHT-HAND SIDE, THE GENOTYPING ARRAYS
21	ARE FOCUSED ON COMMON GENETIC VARIATIONS.
22	SO MOST DIFFERENCES BETWEEN MOST PEOPLE
23	ARE COMMON GENETIC VARIANTS RATHER THAN RARE GENETIC
24	VARIANTS. AND LARGE-SCALE INTERNATIONAL
25	COLLABORATIVE EFFORTS TO COLLECT THE COMMON GENETIC
	23

1	VARIATION ACROSS THE HUMAN SPECIES HAVE BEEN BROADLY
2	SUCCESSFUL. A LOT OF THEM WERE LAUNCHED RIGHT AFTER
3	THE COMPLETION OF THE HUMAN GENOME PROJECT. SO IT
4	WAS SORT OF SEQUENCE A GENOME AND THEN GO ABOUT
5	TRYING TO COLLECT COMMON GENETIC VARIATION ACROSS
6	THE GENOME. THAT THEN GETS PUT ONTO GENOTYPING
7	ARRAYS. AND THEY WORK TO REALLY CAPTURE PRIMARILY
8	THINGS THAT ARE, SAY, 1 PERCENT OR SO ARE MORE
9	COMMON IN THE KIND OF VARIOUS HUMAN GENETIC
10	ANCESTRIES THAT ARE OUT THERE IN THE BIG, WIDE
11	WORLD.
12	GWAS HAS BEEN A MAINSTAY OF GENETIC
13	ANALYSIS FOR SCHIZOPHRENIA, FOR BIPOLAR DISORDER,
14	FOR, I SUPPOSE, AT LEAST THE LAST, I GUESS, DECADE.
15	AND I'LL GO INTO WHAT WE ARE LEARNING A LITTLE BIT
16	THERE AND SOME OF THE CHALLENGES INHERENT WITH
17	INTERPRETING THOSE FINDINGS.
18	MORE RECENTLY, AFTER SEQUENCING ONE HUMAN
19	GENOME AT THE COST OF MANY BILLIONS OF DOLLARS, IT'S
20	NOW POSSIBLE TO SEQUENCE THE HUMAN GENOME EITHER
21	FOCUSING JUST ON THE PROTEIN CODING REGIONS AT A
22	KIND OF SLIGHTLY CHEAPER COST, BUT ON THE ORDER OF
23	HUNDREDS OF DOLLARS RATHER THAN THE BILLIONS OF
24	DOLLARS IT WAS WHEN WE STARTED OR GOING UP TO A KIND
25	OF DEEPER GENOME, WHICH IS MORE EXPENSIVE THAN THE

24

1	EXOME SEQUENCING, BUT ALLOWS COMPLETE COMPREHENSIVE
2	CAPTURE OF GENETIC VARIATION MORE BROADLY.
3	NOW, TO ME, IN THE CONTEXT OF STEM CELL
4	RESEARCH AND WHAT WE ARE DOING IN THESE MODEL
5	SYSTEMS, THERE'S VALUE IN SEQUENCING NOT JUST ONCE,
6	BUT THERE'S SOME VERY NICE WORK FROM STEVE MCCARROL
7	AND KEVIN EGGAN ABOUT CLONAL EXPANSIONS OCCURRING IN
8	IPS-DERIVED MODELS. AND SO SORT OF SEQUENCING IS A
9	SORT OF OVERALL GENOMIC HEALTH OF THE MODEL SYSTEM,
10	AND THE STEM CELL CIRCUMSTANCE IS SOMETHING ELSE
11	THAT'S ACTUALLY QUITE VALUABLE ABOVE AND BEYOND OUR
12	ATTEMPTS TO, LIKE, UNDERSTAND DISEASE MECHANISM,
13	WHICH I WILL SPEND MOST OF THE REST OF THE TALK
14	TALKING ABOUT.
14 15	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN
14 15 16	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO
14 15 16 17	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC
14 15 16 17 18	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR
14 15 16 17 18 19	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A
14 15 16 17 18 19 20	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE
14 15 16 17 18 19 20 21	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE SCHIZOPHRENIA EXOME META-ANALYSIS INITIATIVE."
14 15 16 17 18 19 20 21 22	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE SCHIZOPHRENIA EXOME META-ANALYSIS INITIATIVE." ON THE LEFT-HAND SIDE YOU SEE THIS SORT OF
14 15 16 17 18 19 20 21 22 23	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE SCHIZOPHRENIA EXOME META-ANALYSIS INITIATIVE." ON THE LEFT-HAND SIDE YOU SEE THIS SORT OF CASE CONTROL DESIGN AND THE NUMBER OF INDIVIDUALS.
14 15 16 17 18 19 20 21 22 23 24	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE SCHIZOPHRENIA EXOME META-ANALYSIS INITIATIVE." ON THE LEFT-HAND SIDE YOU SEE THIS SORT OF CASE CONTROL DESIGN AND THE NUMBER OF INDIVIDUALS. IT'S ABOUT 25,000 INDIVIDUALS WITH SCHIZOPHRENIA
14 15 16 17 18 19 20 21 22 23 24 25	TALKING ABOUT. OKAY. SO THE STANLEY CENTER HAS BEEN DEEPLY COMMITTED AND INTEGRATED WITH TRYING TO UNDERSTAND THE GENETIC BASIS OF NEUROPSYCHIATRIC DISORDERS, PARTICULARLY SCHIZOPHRENIA AND BIPOLAR DISORDER, SINCE ITS FOUNDING. AND HERE'S KIND OF A FEW FIGURES FROM OUR LATEST PUBLICATION CALLED "THE SCHIZOPHRENIA EXOME META-ANALYSIS INITIATIVE." ON THE LEFT-HAND SIDE YOU SEE THIS SORT OF CASE CONTROL DESIGN AND THE NUMBER OF INDIVIDUALS. IT'S ABOUT 25,000 INDIVIDUALS WITH SCHIZOPHRENIA RECRUITED ACROSS MANY DIFFERENT PLACES IN THE WORLD,

1	ALTHOUGH THE VAST MAJORITY OF THE COHORTS AT THIS
2	POINT IN TIME ARE COMING FROM THE U.S. AND EUROPE.
3	THERE ARE A FEW OTHER COLLECTIONS IN SOME EAST ASIAN
4	POPULATIONS, BUT, BROADLY SPEAKING, THIS IS LARGELY
5	EUROPEAN GENETIC ANCESTRY.
6	I WILL PAUSE AND SAY THAT GENETIC ANCESTRY
7	IS NOT THE SAME AS RACE OR ETHNICITY, AND WE SHOULD
8	BE ACTUALLY VERY EXPLICIT ABOUT THAT DISTINCTION.
9	THE RIGHT-HAND SIDE OF THIS PICTURE IS A SORT OF
10	REPRESENTATION OF COMMON GENETIC VARIATION AND SHOWS
11	GENETIC SIMILARITY TO A FIRST APPROXIMATION ACROSS
12	INDIVIDUALS REPRESENTED ACROSS THE COHORT. BUT THE
13	GENERAL IDEA HERE IS THAT WE GO OUT AND FIND PEOPLE
14	WITH SCHIZOPHRENIA, COLLECT SAMPLES, PROFILE THEIR
15	DNA, AND THEN COMPARE THAT TO INDIVIDUALS THAT DON'T
16	HAVE SCHIZOPHRENIA, OR GIVEN HOW RARE SCHIZOPHRENIA
17	IS AS AN OUTCOME, SOMEWHERE BETWEEN HALF A PERCENT
18	AND 1 PERCENT. MORE GENERALLY, YOU CAN JUST SORT OF
19	COMPARE THEM AGAINST RANDOM INDIVIDUALS FROM SIMILAR
20	GENETIC ANCESTRY IS THE BEST ADVICE FROM A KIND OF
21	GENIC ANALYSIS POINT OF VIEW.
22	AND FOR EXOME SEQUENCING, WE ARE FOCUSING
23	IN JUST ON GENES AND JUST ON CODING VARIATIONS SINCE
24	THEY OFFER BOTH THE FASTEST INTERPRETATION FOR
25	GENETIC SIGNALS, BUT ALSO HAVE EMPIRICALLY SHOWN TO
	26

1	HAVE THE LARGEST EFFECT SIZES THUS FAR FOR PRETTY
2	MUCH ANY CLASS OF GENETIC VARIATION THAT WE'VE
3	STUDIED.
4	WE ALSO HAVE A SET OF TRIOS. SO PARENTS
5	AND THEN A CHILD WITH SCHIZOPHRENIA AND RECRUITED
6	ALL THREE MEMBERS OF THE PEDIGREE AND THEN LOOK, NOT
7	ONLY FOR VARIATION THAT'S TRANSMITTED FROM PARENT TO
8	OFFSPRING, BUT ALSO NEWLY ARISING OR DE NOVO
9	MUTATIONS WHICH CAN HAVE AN EVEN GREATER IMPACT
10	SINCE THAT'S A CLASS OF VARIATION THAT OCCURS AT A
11	VERY LOW BASE RATE AND THE FORCES OF NATURAL
12	SELECTION HAVE NOT HAD AN OPPORTUNITY TO NECESSARILY
13	ACT ON THAT CLASS OF VARIATION AT THIS POINT IN
14	TIME.
15	SO TAKING OVERALL A KIND OF GENERAL VIEW
T 2	SO TAKING OVERALE A KIND OF GENERAL VIEW
16	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS
16 17	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING
16 17 18	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO
16 17 18 19	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU
16 17 18 19 20	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN
16 17 18 19 20 21	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN GENES WHERE SURVEYS OF HUMAN GENETIC VARIATION MUCH
16 17 18 19 20 21 22	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN GENES WHERE SURVEYS OF HUMAN GENETIC VARIATION MUCH MORE BROADLY ACROSS HUNDREDS OF THOUSANDS OF
16 17 18 19 20 21 22 23	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN GENES WHERE SURVEYS OF HUMAN GENETIC VARIATION MUCH MORE BROADLY ACROSS HUNDREDS OF THOUSANDS OF INDIVIDUALS, THESE GENES ARE PARTICULARLY DEVOID OF
16 17 18 19 20 21 22 23 24	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN GENES WHERE SURVEYS OF HUMAN GENETIC VARIANTS, IN MORE BROADLY ACROSS HUNDREDS OF THOUSANDS OF INDIVIDUALS, THESE GENES ARE PARTICULARLY DEVOID OF THOSE MUTATIONS IN HUMANS LIKELY BECAUSE NATURAL
16 17 18 19 20 21 22 23 24 25	OF WHAT WE ARE SEEING FROM SCHEMA, THERE'S THIS ENRICHMENT OF SORT OF RARE PROTEIN-TRUNCATING VARIANTS, THINGS THAT KNOCK OUT ONE OF THE TWO COPIES OF EACH GENE IN THE HUMAN GENOME THAT YOU CARRY. THESE RARE PROTEIN-TRUNCATING VARIANTS, IN GENES WHERE SURVEYS OF HUMAN GENETIC VARIATION MUCH MORE BROADLY ACROSS HUNDREDS OF THOUSANDS OF INDIVIDUALS, THESE GENES ARE PARTICULARLY DEVOID OF THOSE MUTATIONS IN HUMANS LIKELY BECAUSE NATURAL SELECTION HAS LED TO THE REDUCTION IN THE FREQUENCY

27

1	OF THESE GENE KNOCKOUTS. AND IF WE FOCUS JUST ON
2	THESE GENES THAT ARE UNDER STRONG, PURIFYING NATURAL
3	SELECTION, WE SEE AN INCREASED RATE OF THIS CLASS OF
4	PROTEIN-TRUNCATING VARIANTS.
5	SO THESE STRONG ACTING MUTATIONS THAT ARE
6	KNOCKING OUT ONE OF THE TWO COPIES OF THE GENE ARE
7	CLEARLY ENRICHED IN INDIVIDUALS WITH SCHIZOPHRENIA
8	COMPARED TO INDIVIDUALS WITHOUT SCHIZOPHRENIA. AND
9	NOT ONLY DO WE SEE AN ENRICHMENT OVERALL IN THIS
10	CLASS OF VARIATION, WE HAVE HERE ON THE RIGHT A QQ
11	PLOT, WHICH IS JUST A WAY OF SHOWING THE FULL
12	DISTRIBUTION OF ASSOCIATION RESULTS FROM THE
13	ANALYSIS. AND YOU CAN SEE THAT THERE ARE KIND OF
14	NOW TEN GENES THAT HAVE SURPASSED THE THRESHOLD FOR
15	EXOMEWIDE SIGNIFICANCE WHERE WE ARE QUITE CONFIDENT
16	THAT THEY HAVE A VERY LARGE IMPACT ON SCHIZOPHRENIA
17	RISK MORE GENERALLY. AND I'LL GO A LITTLE BIT
18	FURTHER INTO SOME OF THE THINGS THAT WE ARE LEARNING
19	AS WE CONTINUE THROUGH.
20	IN ADDITION TO PROBING RARE VARIATION
21	THROUGH THAT SEQUENCING APPROACH, PRIMARILY EXOME
22	SEQUENCING, WE ARE ALSO PURSUING COMMON VARIANT
23	DISCOVERY IN COLLABORATION WITH THE PSYCHIATRIC
24	GENOMICS CONSORTIUM. THIS IS, AGAIN, SAME SORT OF
25	APPROACH: COLLECT PEOPLE WITH SCHIZOPHRENIA,

28

1	COLLECT PEOPLE WITHOUT SCHIZOPHRENIA, TAKE SAMPLES
2	FOR THEM, AND NOW HERE LOOK AT COMMON GENETIC
3	VARIANTS USING THOSE GENOTYPING ARRAYS.
4	AND WHAT WE'VE FOUND FROM THIS KIND OF
5	SURVEY OF COMMON GENETIC VARIATION IS THAT COMMON
6	GENETIC VARIANTS MATTER AS PART OF THE RISK FACTORS.
7	FOR SCHIZOPHRENIA, INDEED, THEY REPRESENT THE
8	LARGEST FRACTION OF ATTRIBUTABLE GENETIC RISK THAT
9	WE CAN IDENTIFY WHEN PURSUING OUR INTERPRETATION OF
10	EITHER BE IT SCHIZOPHRENIA OR BIPOLAR DISORDER, BUT
11	MOST OF THESE EFFECT SIZES ARE MARKEDLY MUCH SMALLER
12	THAN THE KIND OF RARE VARIANTS OF STRONG EFFECT THAT
13	ARE BEING IDENTIFIED FROM SCHEMA.
14	NOW, A NATURAL QUESTION TO ASK WHEN YOU'RE
15	TRYING TO KIND OF TRAVERSE DIFFERENT ASPECTS OF
16	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING
16 17	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND
16 17 18	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE
16 17 18 19	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST
16 17 18 19 20	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO
16 17 18 19 20 21	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO IT'S DIFFICULT TO INTERPRET EXACTLY WHAT THE
16 17 18 19 20 21 22	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO IT'S DIFFICULT TO INTERPRET EXACTLY WHAT THE MECHANISM OF A COMMON VARIANT ASSOCIATION IS. MOST
16 17 18 19 20 21 22 23	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO IT'S DIFFICULT TO INTERPRET EXACTLY WHAT THE MECHANISM OF A COMMON VARIANT ASSOCIATION IS. MOST COMMON VARIANT ASSOCIATIONS ARE NONCODING. FIGURING
16 17 18 19 20 21 22 23 24	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO IT'S DIFFICULT TO INTERPRET EXACTLY WHAT THE MECHANISM OF A COMMON VARIANT ASSOCIATION IS. MOST COMMON VARIANT ASSOCIATIONS ARE NONCODING. FIGURING OUT HOW A NONCODING, SO A GENETIC VARIANT THAT LIES
16 17 18 19 20 21 22 23 24 25	GENETIC RISK IS WHETHER OR NOT THERE ARE CONVERGING SIGNALS COMING FROM THE COMMON VARIANT SCANS AND WHAT WE SEE ON THE RARE VARIANT SCANS. AND THE ANSWER TO THAT IS, AT LEAST AT A FIRST APPROXIMATION, YES, WE ARE SEEING CONVERGENCE. SO IT'S DIFFICULT TO INTERPRET EXACTLY WHAT THE MECHANISM OF A COMMON VARIANT ASSOCIATION IS. MOST COMMON VARIANT ASSOCIATIONS ARE NONCODING. FIGURING OUT HOW A NONCODING, SO A GENETIC VARIANT THAT LIES OUTSIDE OF THE PROTEIN CODING REGION, WHAT IT'S

1	ACTUALLY DOING IS A VERY CHALLENGING THING TO DO,
2	BUT WE HAVE A VARIETY OF DIFFERENT APPROACHES THAT
3	WE APPLY TO TRY AND PRIORITIZE GENES FROM THESE
4	KINDS OF ANALYSES. YOU CAN READ ABOUT THIS MORE
5	DEEPLY IN THE PDC SCHIZOPHRENIA PAPER.
6	BUT WHEN WE TAKE GENES PRIORITIZED FROM
7	COMMON VARIANT ANALYSES AND THEN GO AND ASK THE
8	QUESTION IN THE RARE VARIANT CODING RARE CODING
9	VARIANT ANALYSIS, IS THIS A KIND OF SET OF GENES
10	THAT ARE ENRICHED FROM MUTATIONS THAT WE MIGHT THINK
11	HAVE AN OUTSIDE BIOLOGICAL IMPACT IN INDIVIDUALS
12	WITH SCHIZOPHRENIA COMPARED TO INDIVIDUALS THAT
13	DON'T HAVE SCHIZOPHRENIA? THE ANSWER TO THAT IS
14	VERY CLEARLY YES.
15	AND THEN NOT ONLY ARE THE TEN GENES
16	EXCITING, BUT THERE'S VERY CLEAR EVIDENCE THAT THERE
17	IS A KIND OF CONTINUED BULK OF RARE VARIANT SIGNAL
18	THAT REMAINS TO BE DISCOVERED IF AND WHEN WE
19	INCREASE THE SAMPLE SIZES FOR PRIMARY GENETIC
20	DISCOVERY IN SEQUENCING.
21	SO HERE'S A PICTURE OF THE OVERALL
22	LANDSCAPE OF THE GENETIC ARCHITECTURE OF
23	SCHIZOPHRENIA THAT WE KNOW RIGHT NOW. THIS IS
24	BASICALLY EVERYTHING WE KNOW ABOUT SCHIZOPHRENIA
25	GENETICS AT THIS POINT. AND YOU CAN SEE THAT THE
	30

1	RED DOTS THESE ARE THOSE KIND OF CODING VARIANT
2	GENE DISCOVERIES THAT I WAS MENTIONING A BIT
3	EARLIER THEY HAVE ODDS RATIOS RANGING FROM 3, 4,
4	5 UP TO 10, 20, MAYBE EVEN 50.
5	THE GREEN DOTS ARE COPY NUMBER VARIANTS,
6	LARGE CHROMOSOMAL DELETIONS OR DILUTION, LARGE
7	CHUNKS OF CHROMOSOMES THAT ARE DELETED OR
8	DUPLICATED, OR IN SOME INSTANCES A VERY SPECIFIC
9	GENE THAT GETS DELETED OR KIND OF INTERFERED WITH
10	FROM A STRUCTURAL VARIANT POINT OF VIEW QUITE
11	FREQUENTLY LIKE THE NKRN1 DELETION THAT YOU CAN SEE.
12	AND THESE GREEN DOTS HAVE EVEN BIGGER
13	EFFECT SIZES AND MAYBE EVEN STRONGER ODDS RATIOS,
14	BUT ARE MUCH MORE COMPLICATED TO INTERPRET BECAUSE
15	MOST OF THESE REGIONAL MOST OF THESE COPY NUMBER
16	VARIANTS ARE LARGE SEGMENTS THAT ENCOMPASS MANY
17	GENES AND ARE MUCH MORE COMPLICATED TO FIGURE OUT.
18	ON THE RIGHT-HAND SIDE IN THE BLUE DOTS,
19	THESE ARE THE COMMON VARIANTS THAT ARE COMING OUT OF
20	THE GWAS. AND I'VE POINTED OUT A COUPLE THAT MAYBE
21	HAVE BEEN FINE MAPPED TO EITHER A CODING VARIANT, AS
22	IS THE CASE IN SLC39A8, OR ACTUALLY A GENE
23	DUPLICATION EVENT THAT IS THE C4 KIND OF CALL-OUT
24	FOR THE KIND OF POTENTIAL GENE THERE. BUT YOU CAN
25	SEE THAT THE EFFECT SIZES ARE MUCH MORE LIKE ODDS

31

1	RATIOS OF 1.05, MAYBE 1.1, MAYBE 1.2 IN THE VERY
2	KIND OF OUTSIDE.
3	SO THESE ARE SUBTLE NUDGES ON RISK, BUT
4	THERE ARE A GREAT MANY OF THEM. THAT'S THE KIND OF
5	COMMON POLYGENIC COMPONENT. AND THEN THERE ARE
6	THESE RARE VARIANTS OF LARGE EFFECT THAT HAVE A MUCH
7	MORE MARKED IMPACT ON AN INDIVIDUAL'S RISK, BUT ARE
8	CONSIDERABLY RARER IN THE POPULATION. YOU CAN SEE
9	THE MINOR ALLELE FREQUENCY HERE ON THE X AXIS.
10	SAME KIND OF STORY FOR BIPOLAR DISORDER IS
11	THE MOST RECENT BIPOLAR DISORDER PUBLISHED GWAS.
12	AGAIN, COMPLICATED POLYGENIC INHERITANCE, CONVERGING
13	RISK FACTORS WITH WHAT WE INVESTIGATE IN
14	SCHIZOPHRENIA. SO THERE'S SOME OVERLAP IN THE
15	GENETIC RISK FOR SCHIZOPHRENIA AND BIPOLAR DISORDER
16	MORE GENERALLY.
17	INCREASING SAMPLE SIZES TO FIND MORE
18	ASSOCIATIONS, WE AT THE BROAD HAVE PURSUED A BIPOLAR
19	EXOME SEQUENCING STUDY THAT WE'VE DONE ON ABOUT
20	17,000 INDIVIDUALS WITH BIPOLAR AND A SIMILAR NUMBER
21	OF MATCH CONTROLS TO A FIRST APPROXIMATION. ALMOST
22	ALL OF THESE COHORTS ARE DRAWN FROM THE U.S. OR
23	EUROPE WITH PRETTY LIMITED REPRESENTATION IN TERMS
24	OF THE KIND OF GENETIC ANCESTRY AND ETHNICITY AND
25	RACE QUESTIONS.

32

1	BUT IMPORTANTLY, OUR KIND OF, AGAIN, QQ
2	PLOT, OVERALL DISTRIBUTION OF THE ASSOCIATION
3	ANALYSIS, TESTING EVERY SINGLE GENE IN THE GENOME
4	FOR AN ENRICHMENT OF LOSS-OF-FUNCTION MUTATIONS OR
5	MISSENSE MUTATIONS AGAINST INDIVIDUALS WITHOUT THE
6	DISORDER, YOU SEE THIS TOP HIT HERE IS THIS GENE
7	AKAP11. SO AKAP11 KIND OF POPS UP NEAR THE TOP FOR
8	BOTH SCHIZOPHRENIA AND BIPOLAR DISORDER. IT'S GOT A
9	COMBINED P-VALUE OF AROUND 10 TO THE MINUS 9 IF YOU
10	TRAVERSE THE SCHIZOPHRENIA AND BIPOLAR DISORDER
11	LANDSCAPE.
12	PART OF THE REASON THAT WE ARE VERY
13	INTERESTED IN THE AKAP11 LOSS-OF-FUNCTION MUTATIONS
14	IS THAT THERE ARE NO DE NOVO LOSS-OF-FUNCTION
15	MUTATIONS OBSERVED IN THE DECIPHERING DEVELOPMENTAL
16	DELAY PROGRAM THAT HAS BEEN LAUNCHED OUT OF THE
17	SANGER INSTITUTE IN THE UK. AND SO IT REALLY DOES
18	SEEM TO BE A LITTLE BIT MORE SPECIFIC TO THE
19	SCHIZOPHRENIA AND BIPOLAR END OF THE
20	NEUROPSYCHIATRIC DISORDER LANDSCAPE COMPARED TO SOME
21	OF THE OTHER DISCOVERIES THAT DO SHOW OVERLAP, BUT
22	PERHAPS WITH INTELLECTUAL DISABILITY OR OTHER FORMS
23	OF SEVERE NEURODEVELOPMENTAL PROBLEMS.
24	BUT PART OF THE REASON WE ARE SO EXCITED
25	ABOUT AKAP11 IS WHAT IT'S KNOWN TO BE DOING IN
	33

1	HUMANS. AND SO THERE'S THIS LOVELY PAPER FROM THE
2	JOURNAL OF BIOLOGICAL CHEMISTRY THAT SHOWS THAT
3	AKAP11 MAKES THIS PROTEIN AKAP 220. AKAP 220 BINDS
4	WITH GSK3ß, AND IT IS LIKELY INVOLVED IN THE
5	PHOSPHORYLATION OF GSK3ß BY A PROTEIN CALLED PKA OR
6	PROTEIN KINASE A-DEPENDENT INHIBITION OF GSK3B. AND
7	THAT'S EXCITING BECAUSE LITHIUM THERAPY IS THOUGHT
8	TO INHIBIT GSK3 MORE GENERALLY AMONG OTHER THINGS
9	AND DOES TREAT A SUBSET OF INDIVIDUALS WITH BIPOLAR
10	DISORDER.
11	SO HERE WE ARE SEEING SOMETHING THAT'S GOT
12	AT LEAST AN INITIAL INDICATION, SOME CLEAR, STRONG
13	ACTING GENETIC RISK CONFERRED TO SCHIZOPHRENIA AND
14	BIPOLAR DISORDER AND SOME CLUES THAT MIGHT POINT TO
15	POTENTIAL MECHANISTIC FOLLOW-UP STUDIES ABOUT THE
16	RELATIONSHIP BETWEEN KNOCK DOWN OF AKAP11 AND WHAT
17	THAT MIGHT DO TO GSK3ß THAT ALSO INTERFACES WITH
18	KNOWN PHARMACOLOGICAL AGENTS THAT HAVE AN IMPACT ON
19	THESE ILLNESSES.
20	NOW, I'LL JUST CLOSE WITH A FEW NEAR-TERM
21	PLANS BECAUSE I UNDERSTAND THAT THERE ARE LOTS OF
22	DIFFERENT GOALS IN THE CONTEXT OF THE CIRM EFFORT
23	HERE AND WHAT THE NEURO TASK FORCE IS CONCERNING
24	ITSELF WITH. AND SO I THOUGHT I'D DESCRIBE FOR YOU
25	THE MARKEY SEQUENCING PROGRAM THAT WE HAVE FUNDED IN

34

1	PARTNERSHIP BY NIMH WITH SUPPORT FROM THE STANLEY
2	CENTER AND MANY, MANY OTHERS CALLED THE "POPULATIONS
3	UNDERREPRESENTED IN MENTAL ILLNESS ASSOCIATION
4	STUDIES."
5	AND HERE WHAT WE'VE DONE IS BUILT A SAMPLE
6	COHORT OF 120,000 INDIVIDUALS, INCLUDING RECRUITMENT
7	SITES FROM UGANDA, ETHIOPIA, KENYA SOUTH AFRICA, BUT
8	ALSO COLOMBIA, BRAZIL, ACROSS THE AMERICAS IN NEW
9	YORK AND IN SOUTHERN CALIFORNIA, ALL FOCUSED
10	RECRUITMENT ON INDIVIDUALS WITH EITHER, IN THE U.S.
11	CONTEXT, AFRICAN-AMERICANS OR HISPANIC LATINOS, AND
12	IN THE MORE GLOBAL CONTEXT OF COHORTS AND GENETIC
13	ANCESTRIES GROSSLY UNDERREPRESENTED IN THE GENETIC
14	STUDIES THAT WE'VE DONE HERETOFORE.
15	WE ARE FUNDED FOR THIS. WE HAVE KIND OF
16	SAMPLES IN PLACE. AND OVER THE COURSE OF THE NEXT,
17	SAY, TWO TO THREE YEARS, WE SHOULD BE DELIVERING
18	THIS OVERALL DATASET WITH CONTINUED GENETIC
19	INVESTIGATION, NOT ONLY HOPEFULLY REINFORCING THE
20	GENETIC DISCOVERIES THAT WE'VE MADE THUS FAR, BUT
21	IDENTIFYING ADDITIONAL GENES IN THAT KIND OF
22	UNKNOWN, UNTAPPED BURDEN PARTS THAT I SHOWED YOU A
23	LITTLE BIT EARLIER. AND SO THIS WILL ALMOST
24	ASSUREDLY DELIVER ADDITIONAL GENETIC INSIGHTS AND BE
25	PERHAPS MUCH MORE BROADLY REPRESENTATIVE OF THE

1	CALIFORNIAN POPULATION THAN THINGS THAT WE'VE DONE
2	THUS FAR.
3	AND THIS FITS INTO THIS KIND OF EMERGING
4	PARADIGM THAT WE ARE ALL STRUGGLING WITH IN HUMAN
5	GENETICS. LIKE THIS IS NOT JUST SPECIFIC TO
6	NEUROPSYCHIATRIC DISEASE, BUT IS HOW DO WE TRAVERSE
7	THE SPACE FROM GENETIC DISCOVERY INTO INSIGHTS INTO
8	WHAT GENES MATTER, WHAT CELL TYPES MATTER, WHAT
9	BIOLOGICAL PROCESSES MATTER, AND HOW DOES THAT GIVE
10	RISE TO INSIGHTS INTO DISEASE MECHANISM AND
11	THERAPEUTIC HYPOTHESES.
12	GENETIC DISCOVERY IS ABSOLUTELY WORKING.
13	THE CHALLENGE NOW IS TO TAKE THESE GENETIC
14	DISCOVERIES AND PUT THEM IN MODEL SYSTEMS TO PROBE
15	WHAT THE BIOLOGICAL CONSEQUENCES OF THESE GENETIC
16	PERTURBATIONS ARE. WHAT WOULD AN AKAP11 KNOCKOUT DO
17	IN A NEURONAL MODEL SYSTEM? HOW IS THAT SHAPING THE
18	ELECTROPHYSIOLOGICAL READOUTS OF NEURONS, ET CETERA,
19	ET CETERA, ET CETERA? THOSE ARE THE KIND OF
20	QUESTIONS THAT WE WILL NEED TO TURN TO IN THE COMING
21	YEARS TO TRY AND DEEPEN OUR UNDERSTANDING OF WHAT
22	THESE GENETIC RISK FACTORS ARE ACTUALLY DOING
23	BIOLOGICALLY.
24	AND WITH THAT, I WILL CLOSE. I THINK I
25	TOOK MY 20 MINUTES AND OPEN THE FLOOR FOR QUESTIONS
	36
1	IF NOW IS THE RIGHT TIME.
----	--
2	CHAIRMAN GOLDSTEIN: THANK YOU VERY MUCH,
3	DR. NEALE. QUITE AN EXCITING PRESENTATION.
4	QUESTIONS FROM THE GROUP? J.T.
5	CHAIRMAN THOMAS: THANK YOU, DR. NEALE,
6	VERY MUCH FOR THAT ELEGANT PRESENTATION.
7	OBVIOUSLY THIS IS EARLY DAYS IN ALL OF
8	THIS, BUT NOW THAT YOU'VE IDENTIFIED SOME POTENTIAL
9	GENE TARGETS, HOW LONG WOULD YOU ANTICIPATE, GIVEN
10	THE ORDINARY COURSE OF THINGS, THAT IT WILL TAKE TO
11	GET TO A POINT WHERE YOU HAVE SOME THERAPEUTIC
12	CANDIDATES FOR EITHER OF THESE CONDITIONS?
13	DR. NEALE: IT'S DIFFICULT QUESTION. I
14	MEAN THERE'S THE SO THERE'S SORT OF TWO ROADS
15	THAT YOU CAN THINK ABOUT WALKING DOWN. I THINK THE
16	FIRST AND MOST IMPORTANT QUESTION IS WHAT OF
17	THIS WHAT IS THE ACTUAL MECHANISM BY WHICH THE
18	DISEASE PATHOGENESIS IS ARISING? AND THAT MEANS YOU
19	NEED TO HAVE KIND OF CLARITY ON WHY KNOCKING OUT
20	THIS GENE OR PERTURBING THIS GENE IN THIS CONTEXT IS
21	HAVING THE ACTUAL DISEASE MECHANISTIC CONSEQUENCE.
22	THAT MEANS WORKING THE BASIC BIOLOGY. IT MEANS
23	UNDERSTANDING THE BIOCHEMISTRY. IT MEANS MAYBE EVEN
24	IDENTIFYING BIOMARKERS FOR THOSE KINDS OF BIOLOGICAL
25	PERTURBATIONS.

37

1	JUDGING ON OTHER SUCH ARCS IN OTHER PARTS
2	OF MEDICINE, I'D SAY IT'S SOMETHING LIKE A 15- TO
3	20-YEAR JOURNEY FROM THIS KIND OF DISCOVERY TO
4	APPROVED MEDICATION, MAYBE EVEN A LITTLE BIT LONGER
5	IF YOU THINK ABOUT, SAY, PCSK9 INHIBITORS NOW AS AN
6	APPROVED MEDICATION. THOSE INITIAL GENETIC
7	DISCOVERIES WERE 20 PLUS YEARS AGO. SO THAT'S THE
8	SORT OF TIME FRAME.
9	NOW, NATURALLY WE ARE MEANT TO BE BETTER
10	AND SMARTER AT THESE SORTS OF THINGS. OUR MODELS
11	ARE MORE SOPHISTICATED. THEY'RE MEANT TO BE A
12	LITTLE BIT MORE RAPID. SO THAT'S ONE POSSIBILITY.
13	THE OTHER SIDE OF THE EQUATION MAYBE IS
14	THAT, LIKE WITH INNOVATIONS AND THINGS LIKE GENE
15	EDITING OR BASE EDITING OR CRISPR, THAT THERE MAY BE
16	OTHER WAYS OF MORE DIRECTLY TARGETING THOSE
17	MUTATIONS THEMSELVES IN THE FRACTION OF PATIENTS
18	THAT CARRY SUCH MUTATIONS.
19	I DIDN'T SAY THIS THAT EXPLICITLY, BUT THE
20	CARRIER RATE FOR MOST OF THESE MUTATIONS IN
21	INDIVIDUALS WITH SCHIZOPHRENIA OR BIPOLAR DISORDER
22	IS ABOUT ONE IN A THOUSAND. SO THAT'S LIKE ALSO A
23	VERY COMPLICATED ROAD TO GO DOWN; BUT IF YOU RESTORE
24	THE FUNCTION OF THAT GENE IN BOTH ITS COPIES, MAYBE
25	THAT HELPS. IT'S A BIT MORE SPECULATIVE, AND

38

1	THERE'S PROBABLY HIGHER RISK ASSOCIATED WITH
2	PURSUING THAT PARTICULAR THERAPEUTIC STRATEGY, BUT
3	IT IS A LEGITIMATE ALTERNATE APPROACH TO TRYING TO
4	FINESSE OUT WHAT EXACTLY THE DISEASE MECHANISM IS
5	EXPLICITLY.
6	CHAIRMAN GOLDSTEIN: OKAY. I'M GOING TO
7	CALL ON MYSELF AND THEN I'LL CALL ON PAT.
8	A COUPLE QUICK QUESTIONS. SO IN
9	NEURODEGENERATIVE DISORDERS, WHICH I'VE WORKED ON IN
10	THE PAST, ONE COMMON OBSERVATION IS THAT, AS I
11	UNDERSTAND IT, VIRTUALLY EVERY NEURODEGENERATIVE
12	DISORDER, WHEN EXAMINED POST MORTEM SHOWS
13	SIGNIFICANT EVIDENCE OF NEUROINFLAMMATION. AND IT
14	APPEARS TO BE A REALLY IMPORTANT PART OF DRIVING
15	SOME OF THESE DISORDERS.
16	ARE THERE ANALOGOUS POST MORTEM DATA IN
17	ANY OF THESE WHAT WE'LL CALL PSYCHIATRIC DISORDERS?
18	ANYWAY, YOU GET MY DRIFT.
19	DR. NEALE: YEAH. I GOT THE DRIFT. SO
20	NEUROPATHOLOGISTS HAVE BEEN TRYING TO EXPLORE
21	OBVIOUS PATHOLOGICAL DIFFERENCES IN THE CONTEXT OF
22	SCHIZOPHRENIA AND BIPOLAR COMPARED TO INDIVIDUALS
23	WITHOUT AND I THINK IN QUITE, I THINK, MARKED
24	CONTRAST WITH NEURODEGENERATIVE DISORDER HAS NOT
25	REALLY DELIVERED MUCH IN THE WAY OF OBVIOUS BE IT

1	STRUCTURAL OR EVEN CELLULAR READOUTS THAT ARE
2	CLEARLY ASSOCIATING WITH THESE OUTCOMES. I WILL SAY
3	THAT A LOT OF THE GENETIC EVIDENCE DOES POINT TO THE
4	SYNAPSE AND SYNAPTIC FUNCTION, AND IT MAY BE THAT
5	THE GRANULARITY OF NEUROPATHOLOGY IS INSUFFICIENTLY
6	DETAILED AT THIS JUNCTION TO GET CLARITY ON THE
7	DEGRADATION OF SYNAPTIC FUNCTION IN THIS KIND OF
8	CONTEXT. BUT EVEN THEN I'M SORT OF SPECULATING
9	ABOUT EXACTLY WHAT THE MECHANISM IS BECAUSE, WHILE
10	THE GENETICS SUPPORTS SYNAPSE, IT DOESN'T
11	CONCLUSIVELY TELL US THAT THAT IS WHERE THE PROBLEMS
12	LIE.
13	STEVE MCCARROLL AND EVAN MACOSKO,
14	COLLEAGUES HERE AT THE STANLEY CENTER, THAT
15	DEVELOPED A LOT OF THE SINGLE-CELL TRANSCRIPTOMIC
16	PROFILING ACTIVITIES HAVE ALSO PURSUED SIMILAR KINDS
17	OF INVESTIGATIONS. AND I DON'T THINK THAT THERE'S
18	ANYTHING OVERWHELMING EMERGING AT THIS POINT IN TIME
19	THAT WOULD POINT TO AN OBVIOUS NEUROPATHOLOGY AS THE
20	SOURCE OF THESE PARTICULAR ILLNESSES.
21	CHAIRMAN GOLDSTEIN: OKAY. VERY GOOD.
22	THANK YOU. AND THEN A SECOND QUESTION BEFORE WE GO
23	TO PAT. SORRY, PAT.
24	THE IDENTIFICATION OF KINASES, YET AGAIN
25	IN ONE OF THESE NEUROPSYCHIATRIC DISORDERS, IS
	40

1	REALLY STRIKING. AND, OF COURSE, THAT ALSO OVERLAPS
2	WITH SOME OF THE DEGENERATIVE DISORDERS. I GUESS
3	THE QUESTION IS WHETHER THERE'S ANY EVIDENCE IN SOME
4	OF THESE NEURODEGENERATIVE DISORDERS THAT THEY
5	OVERLAP GENETICALLY AMONG THOSE CASES WHERE, SAY,
6	PSYCHOSIS IS PART OF THE ETIOLOGY OF THE DISEASE
7	VERSUS STRAIGHT DEGENERATION TO THE EXTENT THAT
8	ANYTHING IS THAT SIMPLE?
9	DR. NEALE: YEAH. IT'S A GOOD QUESTION.
10	I MEAN OBVIOUSLY YOU GET PSYCHOTIC FEATURES IN A
11	VARIETY OF NEURODEGENERATIVE DISORDERS. AND INDEED
12	ANTIPSYCHOTICS ARE USED TO TREAT THOSE SYMPTOMS AND
13	ASPECTS OF THOSE ILLNESSES. I THINK THERE'S NOT A
14	LOT OF SUPPORT THAT THE GENETIC INSULTS ARE SHARED
15	UPSTREAM. AND THE TIME COURSE PRESENTATION OF THESE
16	PARTICULAR SYMPTOMS MAYBE SUGGESTS THAT IT'S COMING
17	THROUGH A DIFFERENT ROUTE BECAUSE SCHIZOPHRENIA AND
18	BIPOLAR DISORDER, TYPICAL AGES OF ONSET, THERE'S THE
19	PRODROMAL PERIOD WHERE YOU'RE MAYBE TALKING LIKE
20	LATE ADOLESCENCE, EARLY ADULTHOOD, AND THEN FRANK
21	PSYCHOSIS PRESENTING IN EARLY-ISH ADULTHOOD WITH
22	DIAGNOSIS OF SOMETIMES EVEN LAGGING 5, 10, 15 YEARS
23	AFTER INITIAL PRESENTATION OF SYMPTOMS. AND THAT'S
24	JUST 40 OR 50 YEARS AWAY FROM NEURODEGENERATIVE
25	DISEASES ARE GOING TO BE PRESENTING THEIR BUSINESS.

41

1	AND SO WHILE WE MAY END UP WITH THE SAME
2	BREAKDOWN IN SYNAPTIC FUNCTION OR SOME OF THE
3	ALTERATIONS OF SYNAPTIC FUNCTION THAT ARE BEING
4	INDUCED FROM THE ANTIPSYCHOTIC MEDICATION MAY EVEN
5	HELP DEAL WITH PSYCHOTIC SYMPTOMS ON BOTH SIDES OF
6	THE SORT OF NEURODEGENERATIVE, NEUROPSYCHIATRIC
7	FENCE. IT DOES SEEM, AT LEAST AT THIS POINT, FROM A
8	GENETICS POINT OF VIEW, THAT THERE'S ACTUALLY QUITE
9	A HIGH DEGREE OF DISTINCTION IN WHAT IS DRIVING THE
10	ILLNESSES FROM EMPATHOGENIC PROCESS POINT OF VIEW.
11	CHAIRMAN GOLDSTEIN: OKAY. GREAT. THANK
12	YOU. PAT.
13	DR. LEVITT: THANKS VERY MUCH, BEN. THAT
14	WAS GREAT.
15	I WAS GOING TO PIGGYBACK ON YOUR COMMENT
16	ABOUT GENE EDITING AND SOME OF THE MODELS THAT ARE
17	AMENABLE TO THAT. AND ONE OF THE THINGS THAT HAS
18	COME OUT OF SOME OF THE ORGANOID WORK, AS WELL AS
19	SOME RECENT GENETIC REFERENCE PANEL WORK I WON'T
20	CITE MY OWN PAPER THAT JUST CAME OUT WITH CHDA, BUT
21	THERE I DID. I JUST CITED IT THAT THIS ISSUE
22	AROUND BACKGROUND, GENETIC BACKGROUND, IS SO
23	CRITICALLY IMPORTANT IN UNDERSTANDING HETEROGENEITY
24	EVEN OF THE MECHANISM. SO WHAT'S GOING ON IN TERMS
25	OF GENETICS AND TRYING TO IDENTIFY THE MODIFIERS

1	THAT MAY END UP BEING REALLY IMPORTANT FROM EVEN A
2	DRUG TARGETING PERSPECTIVE?
3	DR. NEALE: THAT'S A GOOD QUESTION, PAT.
4	I THINK THAT'S A LOT OF THE EFFORT ON PURSUING
5	COMMON VARIANT SCANS IS TO GET A HANDLE ON SORT OF
6	THE INTRAINDIVIDUAL VARIATIONS AND SUBTLE
7	DIFFERENCES THAT MAY BE INTRODUCED ACROSS EVEN BASIC
8	BIOCHEMICAL REACTIONS. I THINK WE ARE OFTEN TAUGHT
9	IN BIOLOGY THAT THERE'S, LIKE, ONE PATHWAY AND
10	THINGS WORK IN THIS WAY. AND I THINK PART OF WHAT
11	YOU'RE ALLUDING TO IN TERMS OF THE IMPORTANCE OF
12	GENETIC BACKGROUND IS THAT THERE ARE LOTS OF
13	POTENTIAL WIGGLE POINTS IN LOTS OF THESE BIOCHEMICAL
14	PATHWAYS AND PROCESSES AND FUNCTIONS THAT CELLS AND
15	MAYBE EVEN CIRCUITRY OR OTHER PHYSIOLOGICAL
16	PHENOMENA RELEVANT TO BRAIN FUNCTION MIGHT ALSO SHOW
17	DIFFERENCE.
18	AND THAT, I THINK, IS ANOTHER REASON TO
19	BOTH TRY AND ENSURE THAT WE ARE AS REPRESENTATIVE AS
20	POSSIBLE IN OUR GENETIC STUDIES BECAUSE IT GIVES US
21	THE BROADEST POSSIBLE VIEW OF GENETIC VARIATIONS
22	IMPACT ACROSS THESE ILLNESSES AS WELL AS THE KIND OF
23	IMPORTANT FOLLOW-UP WORK OF, ONCE WE IDENTIFY A
24	GENETIC RISK FACTOR, WE START TO GET TO SOME INSIGHT
25	ABOUT HOW WE MIGHT STRATIFY GROUPS OF INDIVIDUALS

1	WITH A DISORDER, HOW WE MIGHT PROBE WHAT BIOMARKERS
2	ARE RELEVANT THAT WE TRY AND KNIT TOGETHER FROM
3	GENETIC DISCOVERY INTO WHAT THOSE INTERMEDIATE
4	PHENOTYPES ARE THAT ARE DRIVING THE PATHOGENIC
5	PROCESS SO THAT WE CAN UNDERSTAND THAT DISEASE AT
6	ITS KIND OF MOST FUNDAMENTAL MECHANISM. AND SO
7	DIVERSITY IN THE LINES, DIVERSITY IN THE KIND OF
8	STARTING CELLULAR MATERIAL IS ABSOLUTELY ESSENTIAL
9	FROM WHERE I SIT AND SOMETHING THAT I'VE BEEN
10	ADVOCATING HERE LOCALLY FOR QUITE A LONG TIME. AND
11	I'M HAPPY TO DO SO FROM MY SOAPBOX IN THIS VENUE AS
12	WELL.
13	DR. LEVITT: THAT'S GREAT. THANK YOU.
14	CHAIRMAN GOLDSTEIN: OKAY. THANK YOU, DR.
15	NEALE. WE'LL COME BACK TO ANOTHER ROUND OF
16	DISCUSSION AFTER WE HEAR FROM MY COLLEAGUE DR.
17	SEBAT. SO, JONATHAN, YOU READY TO GO?
18	DR. SEBAT: I'M READY TO GO. CAN YOU SEE
19	MY MAIN SCREEN WITH MY TITLE SLIDE?
20	CHAIRMAN GOLDSTEIN: YES.
21	DR. SEBAT: YOU SEE MY TITLE SLIDE. OKAY.
22	GREAT.
23	THE LAST COUPLE OF QUESTIONS FROM DRS.
24	GOLDSTEIN AND LEVITT WERE ACTUALLY A GREAT SEGUE TO
25	THIS PRESENTATION. AS DR. LEVITT ASKED, YOU WERE
	44

1	ASKING ABOUT GENETIC MODIFIERS. AND THAT COMPLEXITY
2	OF GENETIC MODIFIERS IS A MAJOR TOPIC THAT I'LL BE
3	TALKING ABOUT. ALSO, DR. GOLDSTEIN'S QUESTION ABOUT
4	NEURODEGENERATIVE AND NEURODEVELOPMENTAL, THERE
5	ACTUALLY ARE A NUMBER OF EXAMPLES WHERE DIFFERENT
6	MUTATIONS GAIN-OF-FUNCTION AND LOSS-OF-FUNCTION IN
7	THE SAME GENE; FOR EXAMPLE, FMR1 CAN CAUSE
8	NEURODEVELOPMENTAL OR NEURODEGENERATIVE DISEASE.
9	WHEREAS, FXTAS NEURODEGENERATIVE DISEASE IS
10	ASSOCIATED WITH GAIN-OF-FUNCTION OF FMR1.
11	NEURODEVELOPMENTAL DISORDER IS ASSOCIATED WITH
12	LOSS-OF-FUNCTION OF FMR1. SO THIS OVERLAP BETWEEN
13	DISORDERS IS VERY MUCH REAL, AND IT'S VERY MUCH
14	DEPENDENT ON THE DIFFERENT TYPE OF FUNCTIONAL EFFECT
15	IN THE GENE. SO UNDERSTANDING A VARIETY OF
16	FUNCTIONAL EFFECTS ON THE SAME GENE IS GOING TO BE
17	CRITICAL IN TRANSLATIONAL STUDIES OF GENETIC
18	FINDINGS.
19	SO LET ME DIVE RIGHT INTO IT HERE. SO
20	I'LL GO QUICK THROUGH THE GENE DISCOVERY BECAUSE THE
21	GENE DISCOVERY PARTS OF IT IS JUST HOW JUST THE
22	FIRST STAGE OF GENETICS. YOU FIND THE GENES AND
23	THEN WHAT? SO THE GENOMEWIDE ASSOCIATION STUDIES OF
24	SCHIZOPHRENIA HAVE BEEN OVERWHELMINGLY SUCCESSFUL IN
25	IDENTIFYING CREDIBLE ASSOCIATIONS THROUGHOUT THE

1	GENOME. OF COURSE, EACH ONE OF THESE ARE INDIVIDUAL
2	SNP'S OF VERY SMALL EFFECTS, BUT COLLECTIVELY THEY
3	ACTUALLY CARRY SIGNIFICANT RISK, AND COLLECTIVELY
4	THEY CAN TELL YOU SOMETHING ABOUT THE UNDERLYING
5	MECHANISMS THROUGH WHICH THE GENETIC RISK ACTS. FOR
6	EXAMPLE, THESE COMMON VARIANTS ARE ENRICHED IN
7	SPECIFIC CELL TYPES; FOR EXAMPLE, PYRAMIDAL NEURONS,
8	MEDIUM SPINY NEURONS, INTERNEURONS. AND THEN, OF
9	COURSE, AS BEN MENTIONED, SYNAPTIC GENES ARE WELL
10	REPRESENTED AMONG THESE TOP HITS. AND SO KIND OF
11	COMPONENTS OF THE SYNAPSE THAT ARE INVOLVED IS ALSO
12	COMING FROM COMMON VARIANTS, WHICH IS VERY
13	ENCOURAGING.
14	OF COURSE, BEN TALKED ABOUT SCHEMA WHERE
15	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS.
15 16	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY
15 16 17	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE
15 16 17 18	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY
15 16 17 18 19	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN
15 16 17 18 19 20	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS
15 16 17 18 19 20 21	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S
15 16 17 18 19 20 21 22	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S HAVING ON THE CIRCUITS AND HOW THAT MIGHT RELATE TO
15 16 17 18 19 20 21 22 23	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S HAVING ON THE CIRCUITS AND HOW THAT MIGHT RELATE TO PSYCHIATRIC DISORDERS.
15 16 17 18 19 20 21 22 23 24	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S HAVING ON THE CIRCUITS AND HOW THAT MIGHT RELATE TO PSYCHIATRIC DISORDERS. AN IMPORTANT THING TO EMPHASIZE, THOUGH,
15 16 17 18 19 20 21 22 23 24 25	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S HAVING ON THE CIRCUITS AND HOW THAT MIGHT RELATE TO PSYCHIATRIC DISORDERS. AN IMPORTANT THING TO EMPHASIZE, THOUGH, AT LEAST IN A CASE CONTROL STUDY, THE EXOMES ARE
15 16 17 18 19 20 21 22 23 24 25	THE RARE VARIANTS IN SCHIZOPHRENIA ARE THE FOCUS. AND, OF COURSE, THE RARE CODING VARIANTS ARE VERY STRONGLY ASSOCIATED, AND ALSO THEY IMPLICATE SPECIFIC GENES. AND NOT ONLY THAT, BUT THEY IMPLICATE SPECIFIC VARIANTS THAT CAN BE MODELED IN CELLS AND IN ANIMALS TO ACTUALLY MODEL THE EFFECTS OF THAT GENE AND TRY TO UNDERSTAND WHAT EFFECT IT'S HAVING ON THE CIRCUITS AND HOW THAT MIGHT RELATE TO PSYCHIATRIC DISORDERS. AN IMPORTANT THING TO EMPHASIZE, THOUGH, AT LEAST IN A CASE CONTROL STUDY, THE EXOMES ARE

1	LARGELY FINDING THE LOSS-OF-FUNCTION VARIANTS. AND
2	THE GAIN-OF-FUNCTION VARIANTS ARE STILL SOMEWHAT
3	BURIED. THE MISSENSE VARIANTS HAVE VERY WEAK
4	EFFECTS, AND IT'S A COMBINATION OF GAIN- AND
5	LOSS-OF-FUNCTION, MAKING THE DISCOVERY OF THOSE
6	VARIANTS A LITTLE MORE DIFFICULT WHEN YOU'RE JUST
7	COLLAPSING ALL THE MISSENSE VARIANTS INTO ONE PILE
8	AND TESTING THEIR ASSOCIATION.
9	SO WE ARE NOT IDEALLY DESIGNED FOR
10	CAPTURING OTHER TYPES OF VARIANTS, BUT
11	LOSS-OF-FUNCTION IS VERY EASY TO CAPTURE. AND
12	THAT'S WHERE WE SEE THE MOST SIGNAL AND WHERE THE
13	HERITABILITY SEEMS TO BE CONCENTRATED. BUT, AGAIN,
14	I THINK TO SOME EXTENT IT HAS TO DO WITH THE
15	LAMPPOST THAT WE ARE LOOKING UNDER.
16	AGAIN, IN AUTISM THERE ARE HUNDREDS OF
17	HIGH CONFIDENCE AUTISM GENES THAT HAVE BEEN
18	IDENTIFIED FROM EXOME SEQUENCING. AND BY FAR MOST
19	OF WHAT WE KNOW ABOUT THE BIOLOGY OF AUTISM IS
20	COMING FROM THE RARE VARIANTS. BUT NOW WITH THE
21	TRIO-BASED APPROACH, WHERE YOU'RE NOT SO RESTRICTED
22	ON YOUR ABILITY TO COLLAPSE ALL THE VARIANTS INTO A
23	SINGLE CATEGORY AND TEST THEIR ASSOCIATION, IF YOU
24	CAN BE A LITTLE LESS DEPENDENT ON THAT, THEN YOU
25	START TO CAPTURE GAIN-OF-FUNCTION MUTATIONS AS WELL.

47

1	SO WE SEE THAT THERE'S A COMBINATION OF
2	LOSS-OF-FUNCTION AND PROTEIN-TRUNCATING VARIANTS AND
3	DELETIONS THAT DOMINATE SCN2A, SHANK3, AND, IN FACT,
4	MOST OF THE GENES ON THE LIST ARE DOMINATED BY
5	PROTEIN-TRUNCATING VARIANTS OR DELETIONS.
6	BUT AS YOU SEE ON THE RIGHT, YOU CAN
7	ACTUALLY SEE THERE'S A FEW THINGS STARTING TO SHOW
8	UP WHERE THE PREDOMINANT ALLELES ARE EITHER
9	DUPLICATIONS OR MISSENSE VARIANTS LIKE P10 AND
10	SCL6A1. SO NOW WE ARE STARTING TO SEE
11	GAIN-OF-FUNCTION VARIANTS STARTING TO BE A BIGGER
12	FACTOR. AND, OF COURSE, MISSENSE VARIANTS OUTNUMBER
13	PROTEIN-TRUNCATING VARIANTS BY A HUGE MARGIN. AND
14	IF WE HAD BETTER WAYS OF DIGGING DEEPER INTO THAT
15	MISSENSE PILE, I THINK THERE'S A LOT MORE TO BE
16	DISCOVERED.
17	NOW, THESE RARE VARIANTS CONVERGE ON
18	NEURODEVELOPMENTAL PATHWAYS. I'M HIGHLIGHTING HERE
19	AUTISM IN PARTICULAR. AND, OF COURSE, THIS IS
20	SYNAPTIC CHROMATIN REMODELING GENES AND
21	POST-TRANSCRIPTIONAL REGULATION. BUT YOU COULD
22	COMPLETELY SWITCH AUTISM AND SCHIZOPHRENIA IN HERE,
23	AND YOU'D BASICALLY BE FINDING THE SAME PATHWAYS.
24	SO JUST AT A BROAD LEVEL, WHAT PATHWAYS ARE INVOLVED
25	IS NOT ENOUGH. IT'S NOT ENOUGH TO TELL YOU WHAT IS

48

1	AUTISM BECAUSE I DON'T THINK AUTISM AND
2	SCHIZOPHRENIA ARE DISTINGUISHABLE VERY CLEARLY JUST
3	BY GROUPING THINGS INTO PATHWAYS. YOU REALLY NEED
4	TO UNDERSTAND HOW THE PATHWAYS ARE ALTERED TO REALLY
5	MAKE SENSE OF IT ALL.
6	SO AUTISM GENES ARE, OF COURSE, ENRICHED
7	IN DEVELOPING CORTEX. GWAS GENES ARE ENRICHED IN
8	THE DEVELOPING CORTEX AND THE EXOME GENES ARE WAY
9	ENRICHED. SO THE MAGENTA LINE HERE IS SHOWING THE
10	TRAJECTORY OF EXPRESSION OF THESE EXOME GENES ACROSS
11	DEVELOPMENT. AND EARLY FETAL EXPRESSION OF THOSE
12	GENES IS HIGHLY ENRICHED.
13	AT THE INDIVIDUAL CELL TYPES, IT'S
14	NEURONS, NEURONS, NEURONS. SO EITHER PROGENITOR
15	CELLS OR MATURING EXCITATORY NEURONS OR EXCITATORY
16	DEEP LAYER NEURONS ARE WHERE THE EXOME FINDINGS ARE
17	SIGNIFICANTLY ENRICHED.
18	YOU LOOK OFF TO THE RIGHT, THOSE OF YOU
19	WHO ARE REALLY EXCITED ABOUT GLIA, MICROGLIA IS
20	THERE TOO. IT JUST DOESN'T REACH SIGNIFICANCE AFTER
21	MULTIPLE TEST DIRECTION HERE, BUT MICROGLIA IS ALSO
22	PROBABLY A FACTOR. IT'S JUST NOT WHERE THE EXOME
23	DATA IS MOST STRONGLY CONCENTRATED. THEY'RE MOST
24	STRONGLY CONCENTRATED IN DEVELOPING NEURONS.
25	SO I WANT TO EMPHASIZE HERE GENE
	49

1	DISCOVERY, FINDING THE LIST OF GENES AND THEN GIVING
2	UP AT THAT POINT, IF YOU WERE A STATISTICIAN, THAT'S
3	HOW YOU WOULD APPROACH GENETICS. BUT LIKE ME OR
4	BIOLOGISTS, THAT'S JUST THE START. YOU NEED TO
5	UNDERSTAND THE GENETIC MECHANISMS BETTER. YOU CAN'T
6	JUST FIND THE GENES AND THEN TURN AROUND AND MOVE ON
7	TO THE NEXT DISEASE.
8	SO WE HAVE TO LOOK AT HOW GENES ARE
9	ACTUALLY RELATING TO TRAITS. THIS IS A RECENT PAPER
10	FROM OUR GROUP LOOKING AT RARE VARIANTS AND COMMON
11	VARIANTS AND HOW THEY IMPACT THE PHENOTYPE SPECTRUM
12	OF AUTISM. AND THIS IS JUST A HEAT MAP OF
13	PHENOTYPES, REPETITIVE BEHAVIOR, SOCIAL BEHAVIOR,
14	ADAPTIVE BEHAVIOR. AND ON THE COLUMNS YOU HAVE
15	DIFFERENT CATEGORIES OF VARIATIONS. SO RARE, DE
16	NOVO, MISSENSE, LOSS-OF-FUNCTION, OR POLYGENIC
17	SCORES FOR AUTISM, SCHIZOPHRENIA, AND EDUCATION.
18	AND WHAT YOU CAN SEE HERE IS THAT ALL
19	THINGS ARE NOT EQUAL. IN FACT, THESE DIFFERENT
20	GENETIC PREDICTORS ACTUALLY HAVE VERY DIFFERENT
21	PHENOTYPIC CORRELATES. SO IF YOU FOCUS JUST ON THE
22	SOCIAL DEFICITS, IT'S ENCOURAGING TO SEE THAT DE
23	NOVO LOSS-OF-FUNCTION AND THE POLYGENIC SCORE FOR
24	AUTISM ARE CORRELATING WITH SOCIAL COMMUNICATION
25	DEFICITS AND SOCIAL RESPONSIVENESS DEFICITS. THAT'S

50

1	VERY ENCOURAGING. IT MEANS THAT GENETICS IS
2	WORKING, AND IT'S ACTUALLY FINDING THINGS THAT ARE
3	RELATED TO SOCIAL BEHAVIOR.
4	BUT IF YOU LOOK AT OTHER ASPECTS OF THE
5	SPECTRUM OF AUTISM, IT'S INTERESTINGLY REPETITIVE
6	BEHAVIOR, NOT REALLY AUTISM POLYGENIC SCORES AND DE
7	NOVOS FOR WHATEVER REASON ARE NOT REALLY MOVING THE
8	NEEDLE ON REPETITIVE BEHAVIOR, BUT SOMEHOW THE
9	POLYGENIC SCORE FOR EDUCATION IS THE STRONGEST
10	INFLUENCE ON REPETITIVE BEHAVIOR IN CASES. OF
11	COURSE, YOU CAN SEE THE SAME THING IS HAPPENING IN
12	CONTROLS AS WELL AS IN CASES. SO THESE FACTORS
13	AREN'T RESTRICTED TO CASES. YOU CAN SEE SIMILAR
14	EFFECTS IN CASES AND CONTROLS, AND YOU SEE IT IN
15	THEIR PARENTS. SOCIAL BEHAVIOR IN PARENTS IS ALSO
16	IMPACTED BY THE SAME GENETIC FACTORS THAT ARE
17	INFLUENCING SOCIAL BEHAVIOR IN THE CHILDREN. AND,
18	OF COURSE, MOTOR FUNCTION IS EXCLUSIVELY A RARE
19	VARIANT FACTOR. RARE VARIANTS ARE INFLUENCING MOTOR
20	FUNCTION.
21	NOW, GENE-BY-SEX INTERACTIONS ARE
22	SOMETHING WE CAN START TO EXPLORE AS WELL. AND WHAT
23	WE ARE SEEING IS THAT THEY GO BOTH WAYS. SO IN
24	AUTISM YOU WOULD THINK, OH, GENETIC FACTORS MUST
25	HAVE A MALE-BIASED EFFECT BECAUSE AUTISM IS A

51

1	MALE-BIASED DISORDER. WELL, YES, THAT'S PROBABLY
2	TRUE. IN FACT, YOU CAN SEE THAT THE POLYGENIC SCORE
3	FOR AUTISM, IT DOES HAVE A MALE-BIASED EFFECT ON
4	SOCIAL COMMUNICATION. BUT OTHER THINGS ARE FEMALE
5	BIASED LIKE THE POLYGENIC SCORE FOR SCHIZOPHRENIA
6	AND EDUCATION SEEM TO HAVE A FEMALE-BIASED EFFECT IN
7	CERTAIN TRAITS. AND ALL OF THESE GENETIC FACTORS
8	ARE CORRELATED WITH THE AGE AT WHICH PARENTS DECIDE
9	TO HAVE CHILDREN.
10	SO THIS IDEA OF OLDER FATHERS ARE MORE

10 LIKELY TO HAVE A CHILD WITH AUTISM, THAT'S VERY MUCH 11 LIKELY TO HAVE A CHILD WITH AUTISM, THAT'S VERY MUCH 12 CONNECTED WITH THE GENETIC RISK THAT OLDER MOTHERS 13 AND OLDER FATHERS CARRY. BUT, AGAIN, THE DIFFERENCE 14 IN THESE FACTORS HAVE A VERY DIFFERENT SEX BIAS IN 15 SOME CASES. SO WHAT'S MAKING MOTHERS OLDER MAY BE A 16 DIFFERENT GENETIC PREDICTOR THAN WHAT'S MAKING 17 FATHERS OLDER.

SO WE WANT TO FOCUS IN ON -- THE RARE 18 19 VARIANTS, OF COURSE, ARE A BIG FOCUS BECAUSE THESE ARE THE EASIEST THINGS TO MODEL IN IPS CELLS OR IN 20 ANIMALS. AND SO THAT'S A BIG FOCUS IN MY LAB. 21 BUT, 22 OF COURSE, IF YOU WANT TO UNDERSTAND HOW DOES THAT GENE OR THAT RARE VARIANT IMPACT THE CELLS AND 23 NEURAL CIRCUITRY AND HOW DOES THAT RELATE TO 24 25 PSYCHIATRIC TRAITS, YOU ACTUALLY HAVE TO STUDY THE

52

1	PSYCHIATRIC TRAITS OF THESE CNV CARRIERS. JUST
2	LABELING THE DIAGNOSIS THAT'S CONNECTED TO A GENE IS
3	PROBABLY NOT SUFFICIENT. YOU REALLY HAVE TO
4	UNDERSTAND THE MAIN EFFECTS OF THAT RARE VARIANT ON
5	HUMAN TRAITS AND CELLULAR AND CIRCUITRY.
6	SO COPY NUMBER VARIANTS ARE PARTICULARLY
7	USEFUL HERE BECAUSE, A, THEY ARE MUCH, MUCH MORE
8	COMMON THAN GENE MUTATIONS BY AN ORDER OF MAGNITUDE.
9	SO IF YOU WANT TO HAVE GOOD POWER TO LOOK AT
10	CLINICAL DATA IN HUMANS, THE CNV'S ARE THE BEST BANG
11	FOR YOUR BUCK. YOU CAN GET HUNDREDS OF INDIVIDUALS
12	WITH THE SAME COPY NUMBER VARIANT. AND THESE HAVE
13	QUANTITATIVE EFFECTS ON TRAITS, GENE EXPRESSION
14	BECAUSE THEY OCCUR AS BOTH DELETION AND IN
15	DUPLICATIONS MUCH OF THE TIME.
16	SO HERE'S JUST AN EXAMPLE OF BODY MASS,
17	HEAD CIRCUMFERENCE, CORTICAL THICKNESS. IN ALL OF
18	THESE CASES, THE 16P DEL AND DUP HAVE MIRROR
19	OPPOSITE EFFECTS ON CORTICAL THICKNESS, BRAIN
20	VOLUME, AND BODY MASS. SO THESE EFFECTS ARE IN
21	OPPOSITE DIRECTIONS. AND THAT'S, AGAIN, A RECURRING
22	THEME HERE. AND MODELING THESE EFFECTS SHOWS THAT,
23	EVEN IN CELLULAR MODELS, YOU CAN HAVE THE
24	DIAMETRICALLY OPPOSITE EFFECTS OF A DELETION OF A
25	GENE VERSUS DUPLICATION OF A GENE. SO THOSE SAME

1	CNV'S, BASICALLY THESE EFFECTS OF HUMAN BRAIN
2	DEVELOPMENT CAN BE RECAPITULATED IN CORTICAL
3	ORGANOID MODELS. SO THIS IS DONE BY LILIA
4	LAKOUCHEVA HERE AT UCSD.
5	BUT, AGAIN, WE NEED TO UNDERSTAND HOW DOES
6	THAT RELATE TO TRAITS. SO BY DEEP PHENOTYPING THESE
7	RARE CNV'S IS PROBABLY ONE VALUABLE WAY THAT WE CAN
8	START TO CONNECT THE CELLULAR PHENOTYPES THAT MIGHT
9	BE TURNED UP IN MODEL SYSTEMS WITH THE ACTUAL HUMAN
10	TRAITS AND HUMAN BRAIN CIRCUITRY.
11	SO THIS IS A GENES TO MENTAL HEALTH
12	NETWORK THAT'S TRYING TO RECRUIT LARGE SAMPLES OF
13	RARE DISEASE. SO OUR TARGET IS ABOUT 500 PER
14	DISORDER STARTING WITH 16P11.2 AND 22Q11.2. AND ONE
15	THING YOU CAN SEE IS THAT, WHEN YOU HAVE THESE LARGE
16	COHORTS, NOT ONLY CAN YOU SEE THE MAIN EFFECT OF THE
17	RARE VARIANT, BUT YOU CAN ALSO SEE THE MODIFYING
18	EFFECT ON POLYGENIC SCORE. SO IN THIS CASE YOU HAVE
19	A DELETION OF 22Q11.2, WHICH HAS A 25-PERCENT RISK
20	OF SCHIZOPHRENIA. THAT'S MASSIVE COMPARED TO JUST
21	ABOUT ANYTHING ELSE THAT'S OUT THERE. BUT IF YOU
22	LOOK AT THE POLYGENIC SCORE FOR SCHIZOPHRENIA IN
23	THOSE CARRIERS, YOU CAN SEE THAT, DEPENDING ON THE
24	POLYGENIC SCORE, YOU COULD HAVE MUCH LOWER RISK.
25	YOU MAY HAVE ONLY 10-PERCENT RISK OF SCHIZOPHRENIA

54

1	IF YOU HAVE THE LOWEST DECILE OF POLYGENIC SCORE.
2	AND IF YOU HAVE THE HIGHEST DECILE OF POLYGENIC
3	SCORE, YOU CAN BE BETWEEN 30- AND 40-PERCENT RISK OF
4	SCHIZOPHRENIA.
5	SO HOW THAT DELETION IS INTERACTING WITH
6	THE POLYGENIC BACKGROUND IS PRETTY IMPORTANT. AND
7	ACTUALLY THE POLYGENIC SCORE FOR IQ IS AN EVEN
8	BIGGER PREDICTOR. DEPENDING ON YOUR DECILE OF IQ
9	POLYGENIC SCORE, YOU COULD HAVE A POSITIVE
10	PREDICTIVE VALUE OF ONLY 20 PERCENT FOR INTELLECTUAL
11	DISABILITY. OR IF YOU HAVE THE TOP DECILE OF THE
12	POLYGENIC SCORE, YOU HAVE A 60-PERCENT POSITIVE
13	PREDICTIVE VALUE FOR INTELLECTUAL DISABILITY. SO,
14	AGAIN, THE POLYGENIC BACKGROUND IS CRITICAL IN
15	UNDERSTANDING WHAT'S GOING ON IN ADDITION TO WHAT AN
16	INDIVIDUAL GENE OR POLYGENIC SCORE IS INFLUENCING.
17	SO HERE IN THE THE CNV'S ARE USED FOR A
18	VARIETY OF OTHER REASONS AS WELL. AND IMPORTANTLY,
19	THE DISSECTING OF THE EFFECTS OF GENES ON
20	PSYCHIATRIC TRAITS AND HOW THAT'S CONCENTRATED IN
21	PATHWAYS, CELLS, AND THE BRAIN ARE CRITICAL.
22	SO WE ARE DOING THESE WELL-POWERED STUDIES
23	OF CNV'S ACROSS MULTIPLE DISORDERS TO REALLY START
24	TO UNDERSTAND HOW THE DELETION/DUPLICATION EFFECTS
25	ON GENES ARE CONCENTRATED IN PATHWAYS ACROSS THESE
	55

1	DIFFERENT TRAITS. AND THESE ARE LARGE COHORTS OF
2	AUTISM, SCHIZOPHRENIA, PTSD, MAJOR DEPRESSION,
3	BIPOLAR DISORDER AND WHERE COPY NUMBER VARIANTS CAN
4	BE DETECTED FROM GWAS, WHICH GIVES YOU REALLY
5	WELL-POWERED STUDIES OF RARE VARIANTS. SO THESE
6	RARE VARIANTS ARE ASSOCIATED THIS IS THE
7	CROSS-DISORDER ASSOCIATION ANALYSIS.
8	SO THE COLOR OF THE TRIANGLE INDICATES THE
9	DISORDER THAT IT'S ASSOCIATED WITH, AND THE
10	DIRECTION OF THE TRIANGLE INDICATES THE DIRECTION OF
11	THE EFFECT. SO NOT ONLY DO YOU HAVE RISK FACTORS
12	THAT ARE RARE, BUT YOU ALSO HAVE PROTECTIVE VARIANTS
13	THAT ARE RARE. FOR EXAMPLE, ON 22Q THE DELETION IS
14	INCREASING YOUR RISK OF SCHIZOPHRENIA, BUT THE
15	DUPLICATION IS DECREASING YOUR RISK FOR
16	SCHIZOPHRENIA. SO YOU HAVE DIRECTIONALITY OF THE
17	EFFECT IS CRITICAL, AND UNDERSTANDING BOTH
18	DIRECTIONS IS ALSO CRITICAL.
19	OF COURSE, WHEN YOU FOCUS IN ON THESE AND
20	LOOK ACROSS THE RANGE OF DISORDERS, WHAT YOU CAN SEE
21	IS THAT CERTAIN GENES OR REGIONS ARE PREDOMINANTLY
22	AUTISM RISK FACTORS. FOR EXAMPLE, THE DUPLICATIONS
23	ON CHROMOSOME 15Q11 TO 13 IS PREDOMINANTLY AN AUTISM
24	RISK FACTOR. AND TO A LESSER EXTENT, YOU CAN SEE
25	RISK FOR SCHIZOPHRENIA, MAJOR DEPRESSION, BIPOLAR

56

DISORDER.

1

OTHER DELETIONS NEARBY, IT'S PLENTY OF 2 RISK FACTORS ARE THE PREDOMINANT ASSOCIATION THAT 3 YOU SEE WITH THE DELETIONS THAT FLANK THIS REGION. 4 AGAIN, THEY'RE DIFFERENT GENES. BUT OVER HERE YOU 5 6 HAVE A VARIETY OF REGIONS THAT ARE ASSOCIATED, AND IN SOME CASES YOU ACTUALLY HAVE THE SAME REGION, BUT 7 YOU HAVE DIFFERENCES WHETHER THERE'S A DUPLICATION 8 9 OR A DELETION, AND FOR 16P, THE DUPLICATION IS THE SCHIZOPHRENIA RISK FACTOR AND THE DELETION IS THE 10 AUTISM, MAJOR AUTISM ASSOCIATION. IT'S AT THE 11 OPPOSITE OF 22Q. 22Q, THE DELETION WAS THE 12 SCHIZOPHRENIA RISK FACTOR AND THE DUP WAS 13 14 PROTECTIVE. IT GOES THE OTHER WAY WITH CHROMOSOME 16. IT'S THE DUP THAT'S THE SCHIZOPHRENIA RISK 15 FACTOR AND THE DEL IS NOT ASSOCIATED WITH 16 17 SCHIZOPHRENIA. SO AS BEN MENTIONED, CNV'S ARE A LITTLE 18 19 HARDER TO INTERPRET FROM THE STANDPOINT OF WHAT GENE IS INVOLVED. THERE ARE 30 DIFFERENT GENES IN THIS 20 REGION. SO WHAT IS THE GENE? BUT THAT'S EXACTLY 21 22 NOT THE QUESTION. THE WHOLE POINT IS THAT YOU'RE NOT PINPOINTING INDIVIDUAL GENES BECAUSE 23 SCHIZOPHRENIA IS NOT A SINGLE-GENE DISORDER. THE 24 25 REASON WHY THESE THINGS HAVE LARGER EFFECTS THAN

1	INDIVIDUAL GENE MUTATIONS IS PRECISELY BECAUSE THEY
2	HAVE AN OLIGOGENIC EFFECT THAT'S DISTRIBUTED ACROSS
3	30 DIFFERENT GENES, AND THERE'S PROBABLY MORE THAN
4	ONE GENE CONTRIBUTING TO THIS.
5	AND SO THE CNV'S ARE A GOOD WAY OF
6	MEASURING HOW GENETIC LOADING IS DISTRIBUTED ACROSS
7	LARGE NUMBERS OF GENES. SO THAT'S ACTUALLY WHAT WE
8	ARE STARTING TO DO MORE OF, WHICH IS TO DO MORE
9	GENE-SET ANALYSES AND TO MEASURE HOW THE GENETIC
10	LOADING ACROSS PATHWAYS, CELL TYPES, BRAIN REGIONS
11	IS ASSOCIATED WITH DISORDERS. AND BY LOOKING ACROSS
12	DISORDERS, YOU CAN LOOK AT HOW PATHWAY, CELL TYPES,
13	AND BRAIN REGIONS DIFFER BETWEEN AUTISM,
14	SCHIZOPHRENIA, MAJOR DEPRESSION AND HOW THEY DIFFER
15	BETWEEN A GAIN-OF-FUNCTION AND LOSS-OF-FUNCTION.
16	SO I'M JUST GOING TO TOUCH ON SOME
17	INTRIGUING RESULTS, UNPUBLISHED, FROM THE LATEST
18	STUDY, AND THEN I'LL OPEN IT UP FOR QUESTIONS. BUT
19	BASICALLY HERE'S A VERY INTRIGUING RESULT WHICH
20	WE'VE BEEN SORT OF DANCING AROUND FOR A FEW YEARS,
21	BUT NOW IT'S REALLY CLEAR IS THAT SCHIZOPHRENIA HAS
22	A DIRECTIONAL EFFECT ON SPECIFIC PATHWAYS AND BRAIN
23	REGIONS. AND THE WAY YOU KNOW THIS IS THAT THE
24	EFFECT SIZE OF DELETION IN A PARTICULAR PATHWAY IS
25	INVERSELY CORRELATED WITH THE EFFECT SIZE OF THE

58

1	DUPLICATION ON THE SAME PATHWAY.
2	SO THERE ARE PATHWAYS THAT ARE STRONGLY
3	ASSOCIATED WITH DELETION AND WEAKLY ASSOCIATED WITH
4	DUPS. AND BY CONTRAST, THERE'S PATHWAYS THAT ARE
5	STRONGLY ASSOCIATED WITH DUPS AND WEAKLY ASSOCIATED
6	WITH DELS. AND OVERALL, BOTH WITH PATHWAYS AND
7	CORTICAL BRAIN REGIONS FROM ALLEN BRAIN ANALYSTS,
8	YOU CAN SEE THAT THESE GENE SETS HAVE A
9	NEGATIVE A SIGNIFICANT NEGATIVE CORRELATION OF
10	DEL EFFECT VERSUS DUP EFFECT.
11	AND IF YOU LOOK AT WHAT THE BRAIN REGIONS
12	ARE, YOU CAN SEE THAT IT'S, WELL, AT LEAST FOR
13	DUPLICATION, IT'S VERY BROADLY EXPRESSED. AND THE
14	DUPLICATION SIGNAL IS REALLY STRONG, BUT IT DOES
15	SEEM TO BE PRETTY WELL CONCENTRATED IN THE
16	PREFRONTAL CORTEX, SOMATOSENSORY CORTEX, MAYBE
17	VISUAL CORTEX. AND THEN IF YOU LOOK AT THE
18	DELETION, REALLY VERY DIFFERENT PATTERN, ALTHOUGH
19	IT'S WEAKER, BUT THERE'S REALLY LESS PREFRONTAL
20	CORTEX ACTION GOING ON IN THE DELETION SIGNAL THAN
21	IN THE DUPLICATION SIGNAL.
22	I WOULDN'T GO SO FAR AS TO SAY THAT
23	DELETIONS AREN'T IMPACTING THE PREFRONTAL CORTEX.
24	I'M JUST SAYING THAT, IN TERMS OF THE PATHWAYS AND
25	BRAIN REGION THAT WE ARE LOOKING AT, REALLY THERE'S

59

1	GAIN-OF-FUNCTION SIGNAL THERE AND LESS
2	LOSS-OF-FUNCTION SIGNAL.
3	AND THE CELL TYPES THAT WE ARE LOOKING AT,
4	WE ARE NOTICING THAT EARLY FETAL STAGE PROGENITOR
5	CELLS, EXCITATORY DEEP LAYER NEURONS ARE ASSOCIATED
6	WITH DUPLICATION AT THE CELL TYPE LEVEL. AND
7	DELETION, A LITTLE BIT MORE POSTNATAL AND MATURING
8	EXCITATORY NEURONS. SO WE ARE SEEING A LITTLE MORE
9	EARLY FETAL VERSUS LATE FETAL, POSTNATAL WHEN WE
10	LOOK AT DUPS VERSUS DELS. AND WHEN WE LOOK AT
11	PATHWAYS, THE DUPS ARE SHOWING MORE REGULATORS OF
12	HISTONE MODIFICATION TRANSCRIPTION, TRANSLATION,
13	THAT KINASE SIGNALING; WHEREAS, THE DELS, THAT'S
14	WHERE THE SYNAPSE SIGNAL IS. SO WE HAVE MORE
15	POST-SYNAPTIC DENSITY. NEUROLIG AND NEUREXINS,
16	LIPID TRANSPORT, WHICH IS POTENTIALLY RELATED TO
17	VESICLE EXOCYTOSIS AND OTHER THINGS.
18	SO THE LOSS-OF-FUNCTION VARIANTS AND THE
19	SYNAPTIC VARIANTS, I WOULD REALLY SAY IT'S JUST PART
20	OF THE STORY. AND IT'S REALLY THIS LOSS-OF-FUNCTION
21	STORY, AND IT'S PROBABLY IMPACTING ONLY A SUBSET OF
22	PATHWAYS AND BRAIN REGIONS. WHEREAS, THERE ARE
23	OTHER FACTORS THAT ARE MORE REGULATORILY EARLY FETAL
24	THAT ARE AFFECTING OTHER BRAIN REGIONS IN A
25	DIFFERENT WAY, PRESUMABLY.

1	SO AUTISM, DIFFERENT STORY. SO THESE SAME
2	PATHWAY RELATIONSHIPS GO THE OTHER WAY IN AUTISM.
3	WHERE DELS AND DUPS, THEY GENERALLY AFFECT THE SAME
4	PATHWAYS, BUT IN DIFFERENT DIRECTIONS, BUT EITHER
5	DIRECTION IS AUTISM ASSOCIATED. SO AUTISM HAS GOT A
6	VERY DIFFERENT KIND OF PATTERN HERE, BUT IT LOOKS
7	LIKE BASICALLY IT LOOKS LIKE GAIN OR LOSS IS AN
8	AUTISM RISK FACTOR. SO IT'S NOT QUITE AS
9	DIRECTIONAL IN AUTISM COMPARED TO SCHIZOPHRENIA.
10	NOW, WHEN YOU ACTUALLY LOOK AT THE
11	PATHWAYS AND BRAIN REGIONS, SOMETHING THAT'S
12	PARTICULARLY STRIKING IS THAT, WAIT A MINUTE, WE ARE
13	SEEING, AT LEAST FROM MY HUMAN VISUAL PATTERN
14	RECOGNITION SOFTWARE I GOT GOING ON IN MY BRAIN, I
15	WOULD LOOK AT THESE TWO PLOTS AND SAY, WELL, THESE
16	KIND OF LOOK SIMILAR. WHAT'S GOING ON HERE? WELL,
17	IF YOU LOOK AT SCHIZOPHRENIA DUPLICATION AND AUTISM
18	DELETION, BOOM. YOU ACTUALLY HAVE THIS POSITIVE
19	CORRELATION WHERE THE LOSS-OF-FUNCTION IN AUTISM IS
20	ASSOCIATED WITH GAIN-OF-FUNCTION IN SCHIZOPHRENIA.
21	AND THIS IS REALLY KIND OF INTRIGUING, AND IT'S TRUE
22	ACROSS PATHWAYS, CELL TYPES, AND BRAIN REGIONS. NOT
23	EVERY PATHWAY, BUT THERE IS A SPECIFIC SUBSET OF
24	PATHWAYS THAT SEEM TO HAVE THIS RELATIONSHIP.
25	SO THIS KIND OF PINPOINT THIS KIND OF
	61

1	LEANS TOWARDS SOME THEORIES THAT HAVE BEEN AROUND IN
2	THE PSYCHIATRY FIELD FOR A LONG TIME, THAT THESE
3	DIFFERENT DISORDERS ACTUALLY HAVE COMMON UNDERLYING
4	PROCESSES, BUT DIAMETRICALLY OPPOSED. SO BERNARD
5	CRESPI HAS A REALLY NICE SERIES OF THEORETICAL
6	PAPERS WHERE HE KIND OF SPECULATES A LOT ON THIS
7	TOPIC. AND THIS ONE IS ONE THAT CAUGHT MY EYE AND I
8	THOUGHT WAS REALLY INTERESTING.
9	SO IN TERMS OF PATHOLOGY IN THE BRAIN,
10	THERE IS PATHOLOGY, BUT IT'S VERY CRUDE. IN THE
11	CASE OF AUTISM, YOU HAVE INCREASED BRAIN VOLUME,
12	INCREASED CORTICAL THICKNESS. IN THE CASE OF
13	SCHIZOPHRENIA, YOU DO HAVE DIAMETRICALLY OPPOSED
14	PHENOTYPES ON THOSE PARTICULAR TRAITS. YOU HAVE ON
15	AVERAGE DECREASED BRAIN VOLUME AND DECREASED
16	CORTICAL THICKNESS IN PSYCHOSIS. AND THIS IS
17	SOMETHING THAT PEOPLE HAVE PICKED UP ON AND BERNARD
18	KIND OF HIGHLIGHTED.
19	ON THE BEHAVIORAL LEVEL YOU KIND OF SEE
20	SOMETHING ALONG THE SAME LINES WHERE COGNITION, FOR
21	EXAMPLE, IN CERTAIN TRAITS, A GAZE, INDIVIDUALS WITH
22	AUTISM HAVE LESS SENSITIVITY TO GAZE FROM OTHERS, A
23	LITTLE BIT LESS ENGAGEMENT, FOR EXAMPLE. WHEREAS,
24	SCHIZO PSYCHOSIS, HIGH SENSITIVITY TO THE GAZE OF
25	OTHERS AND TO SOME EXTENT PARANOIA ABOUT OTHERS

62

1	LOOKING OR THINKING ABOUT YOU.
2	AND THEN THEORY OF MIND KNOWN TO BE
3	REDUCED IN AUTISM; WHEREAS, THOUGHT TO BE ENHANCED
4	IN SCHIZOPHRENIA. INTENTION, FAILURE TO RECOGNIZE
5	OR UNDERSTAND INTENTION IS A PROBLEM WITH AUTISM.
6	WHEREAS, IN SCHIZOPHRENIA YOU HAVE DELUSIONS OF
7	OTHERS HAVING SINISTER INTENTIONS. AND REWARD
8	MOTIVATION, SENSORY PROCESSING, IN AUTISM YOU HAVE
9	DISCOMFORT WITH SENSORY STIMULI; WHEREAS, IN
10	SCHIZOPHRENIA, YOU CAN HAVE A TENDENCY TO HAVE FREE
11	OR LOOSE ASSOCIATION OF THE INCOMING STIMULI.
12	SO THESE DIAMETRICALLY OPPOSED PHENOTYPES
13	ARE TRUE, A, AT THE GENETIC LEVEL; B, TO SOME EXTENT
14	AT THE BRAIN VOLUME AND NEUROANATOMICAL LEVEL, AND
15	PERHAPS TO SOME EXTENT AT THE TRAIT LEVEL AS WELL.
16	SO THIS IS A GOOD TIME TO WRAP UP. THESE
17	IMPLICATIONS FOR TRANSLATIONAL STUDIES ARE ALONG
18	THESE LINES. YOU CLEARLY HAVE ONE GENE THAT MAY
19	HAVE STRONG INFLUENCE ON AUTISM, BUT THAT GENE BY
20	ITSELF DOES NOT EXIST IN A VACUUM. IT'S PART OF A
21	MULTIFACTORIAL ETIOLOGY. NOT ONLY THAT, THAT SAME
22	GENE MAY ALSO CARRY RISK OF OTHER DISORDERS, AND
23	DIFFERENT MUTATIONS IN THAT GENE MAY CARRY RISK OF
24	OTHER EVEN DIAMETRICALLY OPPOSED TRAITS AND
25	DISORDERS SO THAT WE WANT TO INTEGRATE.

63

1	IN ORDER TO REALLY UNDERSTAND PSYCHIATRIC
2	TRAITS, WE NEED TO INTEGRATE CLINICAL, CELL, AND
3	CIRCUIT PHENOTYPES ACROSS MULTIPLE GENES AND CNV'S.
4	AND, OF COURSE, THE MOST VALUABLE RESOURCES THAT
5	ALLOW US TO DO THIS ARE THE BIG COHORTS THAT ARE
6	BEING COLLECTED AND RELEASING PUBLICLY PHENOTYPE
7	DATA, MOST IMPORTANTLY GENETIC DATA, EXOME AND GWAS.
8	AND THEN, OF COURSE, IF YOU HAVE IPS CELLS OR DNA
9	SAMPLES THAT YOU CAN RELEASE ON THOSE AS WELL. WE
10	THINK THAT THIS IS ACTUALLY A GOOD THERE ARE GOOD
11	OPPORTUNITIES FOR SYNERGY ACROSS THESE NIMH-DRIVEN
12	CONSORTIA PROJECTS, RARE DISEASE IN COMMON, AND
13	POTENTIALLY WITH OTHER AGENCIES THAT ARE DOING
14	TRANSLATIONAL STUDIES.
15	THANK YOU.
16	CHAIRMAN GOLDSTEIN: THAT'S JUST GREAT,
17	JONATHAN. THANK YOU VERY MUCH.
18	LET ME START A QUESTION THAT BEN MAY ALSO
19	WANT TO ADDRESS, AND THAT IS TO WHAT EXTENT ARE THE
20	POPULATION STUDIES REACHING INTO UNDERSERVED OR
21	ECONOMICALLY DISADVANTAGED POPULATIONS? BECAUSE YOU
22	MIGHT THINK THERE WOULD BE ENRICHMENT OF SOME OF
23	THESE PROBLEMS IN THESE UNDERSERVED AREAS.
24	DR. SEBAT: SO GENETICS OBVIOUSLY HAS HAD
25	A LONG-STANDING PROBLEM WITH BEING HEAVILY BIASED
	64

1	TOWARDS POPULATIONS OF EUROPEAN ANCESTRY. AND MAYBE
2	THAT WAS CONVENIENT IN THE BEGINNING WHEN YOU JUST
3	NEEDED TO GET TO THOSE SAMPLE SIZES OF HUNDREDS OF
4	THOUSANDS IN ORDER TO GET POWER TO FIND THESE GENES.
5	THEN, YES, I GUESS IT WAS CONVENIENT TO FOCUS ON ONE
6	ANCESTRY BECAUSE YOU CAN'T LUMP IT'S VERY
7	DIFFICULT TO LUMP THEM ALTOGETHER. YOU YOU HAVE TO
8	STUDY THEM SEPARATELY, AT LEAST IN THE BEGINNING.
9	BUT, OBVIOUSLY, NOW IT'S CLEAR THAT YOU'RE
10	NOT GOING TO CAPTURE THE POLYGENIC SIGNAL FROM
11	AFRICAN AND EAST ASIAN ANCESTRIES VERY WELL WITH
12	SUMMARY STATISTICS FROM EUROPEAN GWAS. SO IT'S A
13	PRIORITY OF THE NIMH TO START, AT LEAST WITH REGARD
14	TO SAMPLE COLLECTION, IS REALLY STARTING TO
15	EMPHASIZE NON-EUROPEAN ANCESTRIES IN THE COHORTS.
16	NOW, IN TERMS OF THE GENETIC MECHANISMS, I
17	REALLY DON'T THINK THERE'S A STRONG WELL, THE
18	GENETICS WELL, THE GENETIC BACKGROUNDS ARE
19	DIFFERENT IN DIFFERENT ANCESTRIES, AND YOU CAN'T
20	PREDICT WELL IN ASIAN AND AFRICAN ANCESTRIES WITHOUT
21	DOING A GWAS IN THAT ANCESTRY. IT DOESN'T MEAN THAT
22	THE GENETIC MECHANISMS ARE DIFFERENT. IT DOES MEAN
23	THAT THOSE ARE DIFFERENT POPULATIONS THAT ARE
24	GEOGRAPHICALLY DIFFERENT AND ENVIRONMENTALLY
25	DIFFERENT BOTH IN TERMS OF SOCIOECONOMIC STATUS,

65

ſ

1	ENVIRONMENTAL EXPOSURE.
2	SO THERE'S A LOT, WHEN YOU THINK ABOUT
3	GENE ENVIRONMENT INTERACTION, THAT YOU COULD START
4	TO THINK ABOUT WHEN YOU AND HOW THINGS MAY BE A
5	DIFFERENT CHALLENGE IN A LATINO POPULATION, ASIAN,
6	OR AFRICAN.
7	CHAIRMAN GOLDSTEIN: SOUNDS LIKE THERE'S A
8	LOT OF WORK TO DO TO RECTIFY THAT PROBLEM.
9	DR. NEALE: I'D ADD JUST A FEW, I GUESS,
10	ADDITIONAL PIECES OF NUANCE. HEALTHCARE UTILIZATION
11	VARIES ACROSS LOTS OF DIFFERENT GROUPS OF PEOPLE FOR
12	LOTS OF DIFFERENT REASONS. AND UNDERSERVED GROUPS
13	THAT AREN'T WELL ENGAGED WITH THE HEALTHCARE SYSTEM
14	ARE GOING TO BE UNDERREPRESENTED IN THESE KINDS OF
15	STUDIES, AND THEY'RE ALSO I MEAN SO ONE OF THE
16	LARGEST, MOST HIGH PROFILE BIOBANK EFFORTS IN THE
17	WORLD IS SOMETHING CALLED THE UK BIOBANK. IT HAS
18	HALF A MILLION PARTICIPANTS. THE RATE OF
19	SCHIZOPHRENIA AS A DIAGNOSIS IN THAT COHORT IS, I
20	THINK, A TENTH OF A PERCENT. AND THEN SCRUTINIZING
21	THE SORT OF MATERIAL ASPECTS OF THOSE INDIVIDUALS AS
22	IT PERTAINS TO, SAY, CLINICALLY RECRUITED GROUPS OF
23	INDIVIDUALS WITH SCHIZOPHRENIA, IT'S OFTEN MUCH MORE
24	MILD IN TERMS OF PRESENTATION AND MAY EVEN JUST BE A
25	SORT OF ONE-OFF SORT OF DIAGNOSIS RATHER THAN BEING

1	WHAT WE WOULD ADHERE TO IN THE CONTEXT OF RESEARCH
2	STUDIES.
3	AND SO WITH THAT SORT OF MIND SETS WORK IN
4	SCHIZOPHRENIA IN PARTICULAR, BUT IN SOME OF THE
5	OTHER RELATED DISORDERS THAT CARRY WITH IT SEVERE
6	BEHAVIORAL CONSEQUENCES SORT OF NECESSITATES THAT
7	YOU FOCUS ON THOSE CLINICAL POPULATIONS. AND ONE OF
8	THE THINGS THAT I GUESS I'M MOST GRATEFUL FOR IN
9	TERMS OF WORKING ON THE PUMAS EFFORT IS PARTNERSHIP,
10	AND PARTNERSHIP NOT JUST IN THE U.S., BUT ALSO
11	PARTNERSHIP IN PLACES LIKE COLOMBIA WHERE THE
12	RECRUITMENT FRAME IS LITERALLY EVERYONE IN AN
13	INPATIENT PSYCHIATRIC FACILITY. AND THAT JUST SORT
14	OF GOING TO INPATIENT PSYCHIATRIC FACILITIES IS
15	WHERE YOU ARE GOING TO GET AMONG THE MOST SEVERE
16	INDIVIDUALS, AND OFTEN THE BARRIERS TO ENTRY IN
17	TERMS OF SOCIOECONOMIC STATUS OR OTHER HEALTHCARE
18	UTILIZATION QUESTIONS ARE STILL PRESENT, BUT MORE
19	MODERATED BECAUSE THE SEVERITY TRUMPS THE SORT OF
20	RECRUITMENT ALONG THOSE LINES OF THOSE INDIVIDUALS
21	INTO THAT KIND OF ENVIRONMENT. AND SO THAT DOES GO
22	A PRETTY LONG WAY TO ADDRESSING SOME OF THESE
23	LONGSTANDING INEQUITIES.
24	BUT IT IS, AS JONATHAN SAID, SOMETHING
25	THAT THE NIMH HAD MADE A PRIORITY. PUMAS IS PART OF
	67

1	SOMETHING CALLED THE ANCESTRAL POPULATIONS NETWORK
2	WHERE THE EXPLICIT FOCUS OF THAT RFA WAS TO
3	DIVERSIFY THE UNDERLYING COLLECTIONS. AND THERE ARE
4	OTHER PROJECTS IN THAT NETWORK THAT NIMH IS
5	SUPPORTING THAT ADDRESS OTHER ASPECTS AND
6	DIMENSIONS.
7	AND THEN THE KIND OF FINAL THING I'D SAY
8	ON THIS IS THE MOST EXTENSIVE INVESTIGATIONS IN THE
9	COMMON VARIANT ANALYSIS OF SCHIZOPHRENIA HAVE
10	FOCUSED ON INDIVIDUALS WITH BROADLY EUROPEAN GENETIC
11	ANCESTRIES AND BROADLY EAST ASIAN GENETIC
12	ANCESTRIES. AND IN THE CIRCUMSTANCE WHEREBY THE
13	COMMON GENETIC VARIANT IS PRESENT IN BOTH GROUPS AND
14	ASSOCIATED, IT SHOWS PRETTY SIMILAR EFFECTS. AND
15	THAT SUGGESTS THAT OUR BIOLOGY IS SHARED BIOLOGY,
16	OUR DISEASE BIOLOGY IS SHARED DISEASE BIOLOGY, AND
17	THAT THESE APPROACHES WILL DELIVER, MAYBE NOT A KIND
18	OF UNIVERSAL GUIDE TO HOW SOMEONE PRESENTS WITH
19	THESE ILLNESSES, BUT THERE'S LIKELY TO BE MORE
20	CONSISTENCY RATHER THAN DISSIMILARITY IN UNDERLYING
21	DISEASE MECHANISM.
22	CHAIRMAN GOLDSTEIN: GREAT. THANK YOU.
23	VERY INTERESTING. PAT.
24	DR. LEVITT: THANKS VERY MUCH, JONATHAN.
25	YOU JUST MADE IT MORE COMPLICATED. SO
	68

1	DR. SEBAT: ACTUALLY WHEN YOU GET BELOW
2	SKIN DEEP, IT ALWAYS BECOMES MORE COMPLICATED.
3	DR. LEVITT: THAT'S CORRECT, YES.
4	DR. SEBAT: THE GENE LIST IS NICE BECAUSE
5	IT WAS JUST A BUNCH OF GENE SYMBOLS.
6	DR. LEVITT: MY PERCEPTION IS THAT
7	GENETICISTS KIND OF EMBRACE VARIATION AND
8	VARIABILITY. YOU'RE TRYING TO SOLVE THE PUZZLE OF
9	WHY THAT IS, RIGHT? AND YOU KNOW BOTH OF YOU
10	PRESENTED THAT WITH TRANSPARENCY.
11	IN THE EXPERIMENTAL WORLD, WE TEND TO WANT
12	TO FACTOR VARIATION OUT. AND SO I'M WONDERING HOW,
13	GIVEN WHAT YOU BOTH SAID ABOUT VARIATION AND
14	HETEROGENEITY, HOW YOU THINK WE SHOULD BE HOW YOU
15	THINK WE SHOULD BE THINKING ABOUT THE PROGRAM THAT
16	WE ARE GOING TO EMBARK UPON WHERE THERE'S GOING TO
17	BE A LOT OF DISCOVERY AND YET WE ARE SORT OF
18	EXPERIMENTALLY IN THIS MIND-SET OF VARIATION BEING A
19	DEMON AS OPPOSED TO REFLECTING THE COMPLEXITY OF THE
20	BIOLOGY, WHICH IS REFLECTED IN THE GENETICS.
21	DR. SEBAT: SO WHEN COLLEAGUES AND I HAVE
22	GOTTEN TOGETHER FOR MARGARITAS AND BRAINSTORMED
23	IDEAS FOR HOW DO WE MODEL THIS IN IPS CELLS IN A WAY
24	THAT WOULD SOMEHOW GIVE US A REPRESENTATION OF HOW
25	THE RARE VARIANT EFFECTS ARE WORKING AND HOW THE
	69

1	COMMON VARIANT EFFECTS ARE WORKING, AND I THINK THE
2	BEST THING WE'VE KIND OF COME UP WITH IS THAT, WELL,
3	ISOGENIC LINES OF RARE VARIANTS, VERY DOABLE AND
4	EXTREMELY LARGE EFFECTS AND VERY MEASURABLE. AND
5	THESE ARE BEAUTIFUL, SO LET'S STICK WITH THAT.
6	LET'S STICK WITH THE RARE VARIANT EFFECTS. BUT IF
7	THEY'RE ROBUST ENOUGH, WE SHOULD BE ABLE TO APPLY
8	THEM TO ONE ISOGENIC LINE. AND NOW LET'S CHOOSE AN
9	ISOGENIC LINE WITH VERY HIGH POLYGENIC RISK AND
10	MAYBE A SERIES OF THEM AND LET'S USE SOME ISOGENIC
11	LINES WITH VERY LOW POLYGENIC RISK FOR CERTAIN
12	FACTORS. AND NOW TRY TO SEE IF THERE IS AN
13	INTERACTION OR A DIFFERENCE IN THE OVERALL EFFECT
14	BETWEEN THE HIGH GENETIC BACKGROUND AND THE LOW
15	GENETIC BACKGROUND, FOR EXAMPLE.
16	OBVIOUSLY THE DREAM, BECAUSE THE BIOBANKS
17	THAT HAVE REALLY BEEN THE MOST VALUABLE RESOURCES
18	ARE THE ONES THAT DO COLLECT GENOMIC DATA AND
19	SAMPLES ON REALLY LARGE COHORTS. SO THE DREAM,
20	WHICH WOULD BE COST PROHIBITIVE MAYBE, I DON'T KNOW,
21	BUT WOULD BE A COHORT STUDY WHERE YOU HAVE DEEP
22	PHENOTYPE DATA AND CELLULAR PHENOTYPES. IF YOU CAN
23	DO THAT TO THE EXTENT IN TERMS OF IF ALL YOU
24	CARE ABOUT IS A POLYGENIC SCORE, THEN YOUR SAMPLE
25	SIZES DO NOT NEED TO BE IN THE TENS OR HUNDREDS OF

70

1	THOUSANDS. THE SAMPLE SIZES YOU NEED TO QUANTIFY
2	POLYGENIC SCORE EFFECTS, IF THE EFFECT ON A TRAIT IS
3	RELATIVELY LARGE, WOULD BE A FEW HUNDRED.
4	SO A COHORT STUDY DEEPLY PHENOTYPED OF A
5	FEW HUNDRED CAN START TO. THE RARE VARIANT STUFF,
6	NOT SO WELL, BUT A POLYGENIC SCORE EFFECT,
7	POTENTIALLY DOABLE.
8	BEN, YOU WANTED TO ADD SOMETHING TO THAT.
9	DR. NEALE: YEAH. I THINK I MIGHT TAKE A
10	SUBTLY DIFFERENT TACK. AND I BROADLY AGREE WITH
11	WHAT JONATHAN WAS SAYING, BUT I THINK THERE ARE A
12	FEW OTHER PIECES TO PUT ON THE TABLE.
13	SO THE LINE OF EVIDENCE THAT SAYS THAT THE
14	COMMON VARIANTS AND THE RARE VARIANTS ARE MAYBE
15	CONVERGING ON SIMILAR BIOLOGY, I THINK, IS ACTUALLY
16	A VERY IMPORTANT ONE. BECAUSE YOU COULD BECAUSE
17	THERE ARE OPEN QUESTIONS ABOUT WHAT IS THE CELLULAR
18	READOUT THAT IS RELEVANT? WHAT IS THE RIGHT PROCESS
19	TO MODEL IN AN IPS NEURONAL LINE, AND HOW ACCURATE
20	DOES THAT IPS NEURONAL LINE HAVE TO BE TO
21	RECAPITULATE THE SORT OF UNDERLYING PHYSIOLOGICAL
22	PROCESS THAT WE ARE TRYING TO UNDERSTAND? AND WHAT
23	DO YOU NEED TO ALSO CO-CULTURE IT WITH? HOW
24	COMPLICATED DOES IT NEED TO BE? DOES IT NEED TO BE
25	THE FULL ORGANOID, ET CETERA?

71

AND I THINK ALL OF THESE QUESTIONS ARE
STILL VERY MUCH OPEN QUESTIONS IN THE FIELD. BUT I
WOULD FLAG THAT THE RARE VARIANTS OF LARGE EFFECT ON
RISK PROVIDE AN OPPORTUNITY TO SORT OF MAYBE GET A
VERY FAST READOUT ON SOME OF THESE ASSAYS OR AT
LEAST DISPATCH CERTAIN ASSAYS AS NOT SHOWING
ANYTHING IN THE CONTEXT OF THE RARE VARIANT, YES,
NO, ET CETERA, ET CETERA. BUT BECAUSE WE ARE SEEING
CONVERGENCE BETWEEN THE COMMON GENETIC RISK AND THE
RARE GENETIC RISK, IT SEEMS LIKE A NATURAL
OPPORTUNITY FOR STAGING WHERE YOU USE YOUR RARE
VARIANTS AS AN INITIAL PROBE, IDENTIFY WHAT READOUTS
ARE RELEVANT OR SHOW PERTURBATION IN THAT, AND THEN
SCALE UP THE NUMBER OF LINES SO THAT YOU CAN TEST
WHETHER COMMON GENETIC VARIANTS THAT ARE ASSOCIATED
WITH THE DISORDER UNDER STUDY ARE ALSO SHOWING
CONSISTENT DOSE RESPONSE ON THE FUNCTIONAL READOUT
THAT YOU'RE DOING.
BECAUSE I THINK IT'S EASY TO GET TO, LIKE,
THIS IS DIFFERENT BECAUSE WE KNOCKED OUT A GENE, BUT
IS IT ACTUALLY REALLY RELEVANT TO THE CORE
PATHOGENESIS OF THE ILLNESS? IT'S A LOT HARDER TO
GET TO DOING THAT IN MORE LINES AFTER YOU'VE
ESTABLISHED YOUR ASSAY IS HIGH CONFIDENCE.
AND THEN THE FINAL THING I WOULD ADD IN
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1	WHATEVER. BUT TO THE EXTENT THOSE DRUGS ARE OUT
2	THERE, HOW WERE THEY DEVELOPED WHEN THERE'S NO
3	THE FIELD OF GENETIC AND GENOMIC ANALYSIS OF THE
4	UNDERLYING DISEASE IS IN ITS RELATIVE INFANCY AND
5	THERE'S NOT AN ESTABLISHED LIST OF TARGETS TO GO
6	AFTER AND, THEREFORE, NO WAY OF REALLY UNDERSTANDING
7	THE MECHANISM OF ACTION OF A DRUG THAT THEY ARE
8	DEVELOPING.
9	HOW ARE THOSE DRUGS, HOW HAVE THEY BEEN
10	DEVELOPED TO THIS POINT WHEN THE UNDERLYING
11	KNOWLEDGE THAT WOULD BEST INFORM THEM ISN'T RIPE
12	ENOUGH AT THIS STAGE?
13	DR. SEBAT: LET ME JUST SO I CAN
14	CONJURE UP AN INTERPRETABLE ANSWER, I'LL TRY TO
15	REPHRASE OR REFRAME THAT JUST A LITTLE BIT. SO THE
16	PROBLEM REALLY IS WE NEED THERAPEUTIC TARGETS. WE
17	ARE STARTING WITH A LIST OF GENES. AND HOW DO WE GO
18	FROM A LIST OF GENES TO THERAPEUTIC TARGETS? AND I
19	THINK THAT, OBVIOUSLY, THE ACTUAL EFFECTS OF GENES
20	ON CIRCUITS IS A TRACTABLE PROBLEM. UNDERSTANDING
21	THAT IS DOABLE.
22	UNDERSTANDING THE EFFECTS OF DRUGS ON
23	PATHWAYS AND CIRCUITS IS ALSO DOABLE BY USING
24	EXACTLY THE SAME SYSTEMS, IF YOU USE IPS CELLS TO
25	MEASURE THE EFFECTS OF DRUGS.

74

1	AND SO WHAT SOME PEOPLE ARE STARTING TO
2	THINK ABOUT IS KIND OF A SPECTRUM OF PHARMA, A
3	SPECTRUM OF DRUGS AND THEIR EFFECTS AND THE GENETIC
4	EFFECTS AND TRYING TO BE ABLE TO MATCH THE DRUG WITH
5	THE GENE BASED ON WHAT YOU KNOW ABOUT THE GENETIC
6	EFFECTS IS ARE THERE DRUGS THAT ARE ACTUALLY
7	REVERSING WHAT YOU SEE?
8	AND, OF COURSE, THE GENETIC TOOLS, CRISPR
9	ACTIVATION, CRISPR INHIBITION, AND OTHER TYPES OF
10	TOOLS ARE ALSO THERE TO SEE IF YOU CAN RESCUE THE
11	PHENOTYPES. SO YOU HAVE THE MAIN EFFECTS OF THE
12	GENES, YOU HAVE GENETIC TOOLS THAT WILL TELL YOU CAN
13	THIS BE RESCUED, AND THEN, OF COURSE, YOU WILL
14	HAVE AND THAT IN OF ITSELF MAKES SOMETHING A
15	TARGET.
16	THE QUESTION IS WILL THERE BE A SMALL
17	MOLECULE THAT MIGHT WORK TOWARDS THAT? THAT'S
18	ANOTHER QUESTION. OR ARE THERE OTHER SMALL
19	MOLECULES THAT RECAPITULATE THAT EFFECT? THAT'S
20	KIND OF HOW I WOULD THINK OF IT AS REALLY TRYING TO
21	UNDERSTAND THE EFFECTS OF GENES, UNDERSTANDING IF
22	IT'S REVERSIBLE, AND THEN UNDERSTANDING WHETHER
23	THERE ARE SMALL MOLECULES THAT WILL DO THE SAME
24	THING.
25	DR. NEALE: SO TO ANSWER YOUR QUESTION,
	75

1	J.T., ABOUT WHAT IN THE MEDICINE CABINET EXISTS
2	ALREADY AND HOW WE GOT HERE, PRETTY MUCH EVERY
3	DISCOVERY WAS SERENDIPITOUS. SO LITHIUM WAS FOUND
4	BY SOME WORK ON GUINEA PIGS AND SHOWING THAT THE
5	GUINEA PIGS APPEARED MORE RESTFUL. AND THEN THIS
6	WAS DONE IN THE LIKE LATE '40S, EARLY '50S, AND THEN
7	PUSHED INTO HUMANS TO SEE IF THAT WOULD MAKE THEM
8	CALM DOWN. AND IT HAD CALMING EFFECTS, BUT THERE
9	WAS TOXICITY TO DEAL WITH.
10	I THINK THE ANTIPSYCHOTICS WERE DEVELOPED
11	PRIMARILY AS ANESTHETIC AGENTS AND THEN SHOWN
12	SERENDIPITOUSLY TO HAVE THESE OTHER SIDE EFFECTS.
13	SO LITERALLY BASICALLY EVERY DRUG THAT IS
14	OUT THERE HAS BEEN FOUND NOT THROUGH A RATIONAL
15	BASED FOUNDATIONAL HERE IS AN INSIGHT. THIS IS AN
16	UNDERSTANDING OF PATHOGENIC MECHANISM. LET US GO
17	OUT AND TREAT IT, WHICH IS WHAT JONATHAN WAS TRYING
18	TO, I THINK, TELL US OF WHERE WE MIGHT GO. IT WAS
19	MORE LIKE PEOPLE ARE MUCKING AROUND WITH MEDICINAL
20	CHEMISTRY, FOUND SOME INTERESTING COMPOUNDS OR
21	SUBSTANCES, GAVE THEM TO MODEL ORGANISMS, READ OUT
22	SOME BEHAVIORAL CONSEQUENCES, AND THEN SAID, WELL,
23	LET'S TRY IT IN HUMANS AND SEE WHAT HAPPENS.
24	DR. LEVITT: AND IN SOME WAYS IT'S EVEN
25	MORE SERENDIPITOUS BECAUSE SOMETIMES IT WAS A SIDE
	76

1	EFFECT LIKE ANTIHISTAMINES WERE USED IN HOSPITALS,
2	PSYCHIATRIC HOSPITALS, IN LONG ISLAND WHERE
3	INDIVIDUAL SCHIZOPHRENIA AND THE SIDE EFFECT OF
4	GIVING THEM AN ANTIHISTAMINE THAT WAS DEVELOPED IN
5	THE 1940S WAS THAT IT CALMED THEIR PSYCHOSIS THROUGH
6	A STRIATAL RECEPTOR.
7	THERE'S A REALLY GOOD BOOK THAT I THINK IS
8	A GOOD BOOK CALLED BETTER THAN PROZAC, WHICH IS
9	WRITTEN BY THE FORMER CHAIR OF PSYCHIATRY AT UCSF
10	SOME OF YOU MAY KNOW, SAM BARONDES. AND IT'S AN
11	INTERESTING READ TO SORT OF GET AT THE HISTORY THAT
12	BEN JUST REFERENCED WHERE MOST OF WHAT WE HAVE,
13	ALMOST ALL OF WHAT WE HAVE IS PURE COINCIDENCE OR
14	LUCK OR SOME OBSERVATION THAT SOMEBODY MADE THAT HAD
15	NOTHING TO DO WITH TARGETING.
16	CHAIRMAN GOLDSTEIN: GREAT. INTERESTING.
17	ROSA.
18	DR. CANET-AVILES: THANK YOU, DR.
19	GOLDSTEIN. I JUST WANTED TO PROVIDE A LITTLE BIT
20	MORE INFORMATION WITH REGARDS TO HOW CAN WE MODEL
21	THESE IN IPS CELL LINES AND THE MENTION ABOUT HIGH
22	POLYGENIC RISK SCORES AND LOW POLYGENIC RISK SCORES.
23	IN FACT, I JUST WANTED OUR BOARD TO KNOW THAT
24	THERE'S ACTUALLY A PAPER FROM KRISTIN BRENNAND'S LAB
25	IN A COLLABORATION THAT SHOWED THAT OUR OWN

1	CIRM-FUNDED HUMAN PLURIPOTENT STEM CELL LINES ARE
2	AVAILABLE TO ALL RESEARCHERS.
3	THEY DID A STUDY OF 12 IPS CELL LINES FROM
4	CONTROL DONORS THAT THEY HAD EXTREME EITHER LOW OR
5	HIGH POLYGENIC RISK SCORES. AND THREE INDEPENDENT
6	LABS VALIDATED THE SUITABILITY OF THOSE LINES FOR
7	CRISPR-BASED IATROGENIC COMPARISONS OF NEURONS AND
8	GLIA OR OTHER.
9	SO I JUST WANTED TO LET YOU KNOW THAT THIS
10	IS AVAILABLE, AND IT'S KIND OF A PROOF OF PRINCIPLE
11	AND A VERY GOOD, NICE VALIDATION BY THREE DIFFERENT
12	LABS THAT THAT EXISTED.
13	DR. SEBAT: I THINK A POWER CALCULATION
14	WOULD TELL YOU THAT STUDIES IF YOU DO A LOT OF
15	STUDIES OF 12 VERSUS 12, YOUR LITERATURE IS GOING TO
16	BE REALLY DIFFICULT TO UNDERSTAND.
17	DR. CANET-AVILES: WELL, THAT'S A IT'S
18	A START.
19	DR. SEBAT: YEAH, THAT'S THE PROBLEM. AND
20	THAT'S A GREAT PROOF OF PRINCIPLE. BUT IF YOU WERE
21	GOING TO THEN MAKE THAT A RESOURCE AND HAVE A DOZEN
22	DIFFERENT LABS DO IT AND YOU WANT INTERPRETABLE
23	RESULTS, YOU JUST HAVE TO DO THE BASIC POWER
24	CALCULATIONS. AND 12 VERSUS 12 IS NOT GOING TO GIVE
25	YOU WHAT YOU NEED.

78

1	CHAIRMAN GOLDSTEIN: SO, ROSA, COULD YOU
2	POST A COUPLE OF THOSE REFERENCES?
3	DR. CANET-AVILES: ABSOLUTELY. YES. I'LL
4	PASS THEM ON.
5	CHAIRMAN GOLDSTEIN: YEAH. GREAT. THANK
6	YOU.
7	WHO IS (310) 922 WHATEVER OVER HERE?
8	MS. DEQUINA-VILLABLANCA: THAT WOULD BE A
9	PUBLIC COMMENT, LARRY.
10	CHAIRMAN GOLDSTEIN: PUBLIC COMMENT.
11	OKAY. WE ARE NOT QUITE THERE, BUT WE'RE GOING TO
12	GET THERE MOMENTARILY.
13	SO ANY FINAL QUESTIONS FOR DRS. NEALE OR
14	SEBAT BEFORE WE MOVE IN THE DIRECTION OF PUBLIC
15	COMMENT? OKAY.
16	SO LET ME GIVE US A TRANSITION. SO OUR
17	NEXT COUPLE OF MEETINGS WILL MOVE IN AND BEGIN TO
18	FOCUS ON CELLULAR MISBEHAVIOR AND ODD BEHAVIOR AT
19	THE LEVEL OF IPS-DERIVED NEURONS AND, OF COURSE,
20	GLIA, WHICH WE REALLY SHOULD NOT FORGET. ONE OF THE
21	PUBLIC COMMENTS MAY CONCERN GLIA, IN FACT. BUT
22	THEY'RE IMMENSELY INTERESTING CELLS AND MAY HAVE A
23	GREAT DEAL OF EFFECT ON THE BEHAVIOR OF NEURONS IN
24	WAYS THAT I'D SAY WE STILL HAVE VERY INADEQUATE
25	UNDERSTANDING.

79

1	SO WE'LL BEGIN TO WORK OUR WAY IN THAT
2	DIRECTION AS WELL AS CONTINUING TO DISCUSS CONCEPT
3	PLANS AND WHERE WE MIGHT WANT TO THINK ABOUT
4	TARGETING FUNDING.
5	SO IF THERE'S NOTHING ELSE FROM THE TASK
6	FORCE, THEN, MARIANNE, CAN WE MOVE TO PUBLIC
7	COMMENT?
8	MS. DEQUINA-VILLABLANCA: YES, WE CAN.
9	AND EACH PUBLIC COMMENT IS FOR THREE MINUTES. WE'VE
10	GOT (310) 592-2960. IF YOU CAN UNMUTE YOURSELF.
11	CHAIRMAN GOLDSTEIN: AND IDENTIFY YOURSELF
12	PLEASE. PHONE NUMBER ENDING IN 960, ARE YOU GOING
13	TO UNMUTE YOURSELF?
14	DR. GESCHWIND: IT'S DAN GESCHWIND FROM
15	UCLA. I JUST FIGURED OUT HOW TO UNMUTE MYSELF. I
16	REALLY APOLOGIZE.
17	CHAIRMAN GOLDSTEIN: THANKS, DAN.
18	DR. GESCHWIND: SO REALLY I WANT TO THANK
19	YOU FOR THIS OPPORTUNITY AND FOR THE REALLY
20	COMPREHENSIVE AND INSIGHTFUL PRESENTATIONS AND THE
21	DISCUSSION AROUND IT FROM BOTH DRS. NEALE AND SEBAT.
22	I THINK THEY EMPHASIZED HOW GENETICS HAS BEEN
23	REMARKABLY SUCCESSFUL IN ACTUALLY IDENTIFYING
24	FACTORS THAT CAUSE NEUROPSYCHIATRIC DISEASE FROM
25	SCHIZOPHRENIA AND BIPOLAR TO ASD AND

80

1	NEURODEVELOPMENTAL DISORDERS. AND, OF COURSE, BOTH
2	OF THEM HAVE PLAYED LEADING ROLES IN THAT WORK AS
3	THEY DESCRIBED AND CONTINUE TO DO SO. SO THAT WAS A
4	REALLY FANTASTIC PRESENTATION.
5	I JUST WANT TO EMPHASIZE TWO THINGS THAT
6	THEY SAID. THE RARE VARIANTS IMPLICATE SPECIFIC
7	GENES, LOSS-OF-FUNCTION IN MANY CASES. THERE'S
8	STILL A TON TO LEARN. BUT MOST GENETIC VARIATION
9	LIES IN NONPROTEIN CODING REGIONS OF THE GENES, THAT
10	THESE REGIONS DON'T ACTUALLY CODE TO PROTEINS. IT'S
11	HARD TO KNOW LOSS- VERSUS GAIN-OF-FUNCTION. AND
12	THESE REGIONS ARE THOUGHT AND MANY KNOWN TO REGULATE
13	GENE EXPRESSION IN SOME WAY OR ANOTHER EITHER BY
14	TRANSCRIPT LEVEL OR BY SLICING. AND SO, THEREFORE,
15	UNDERSTANDING THE REGULATION OF GENE EXPRESSION AND
16	FUNCTION IS A KEY ELEMENT.
17	ONE OF THE CONSORTIA THAT I THINK CIRM HAS
18	AN OPPORTUNITY TO REALLY INTERACT WITH IS NOT ONLY
19	THE BRAIN CONSORTIUM, BUT THE PSYCHENCODE
20	CONSORTIUM, WHICH WAS INITIATED BY NIMH TO DEVELOP
21	AN UNDERSTANDING OF GENE REGULATION IN THE BRAIN
22	BECAUSE GENE REGULATION IS SO TISSUE AND
23	DEVELOPMENTAL STAGE SPECIFIC.
24	SO WHILE CODING REGIONS THAT CODE FOR
25	PROTEINS ARE HIGHLY CONSERVED EVEN ACROSS VERTEBRATE
	81

1	ALL THE WAY TO MOUSE AND ZEBRAFISH AND, THEREFORE,
2	MAKING ANIMAL MODELS IS A VERY REASONABLE AND
3	POWERFUL APPROACH. THE NONCODING REGIONS THAT WE
4	ARE TALKING ABOUT IN WHICH MOST DISEASE ASSOCIATED
5	GENETIC VARIATION LIES ARE NOT THAT WELL CONSERVED
6	ACROSS SPECIES OR THEIR CONSERVATION IS POORLY
7	UNDERSTOOD. AND, THEREFORE, HAVING MODELS WITH
8	HUMAN GENETIC BACKGROUNDS IS NECESSARY. AND THIS
9	NECESSITATES RIGHT NOW THE USE OF HUMAN-DERIVED
10	MODELS THAT CAN REPRESENT HUMAN GENETIC DIVERSITY
11	AND GENETIC RISK IN REGULATORY NETWORKS.
12	SO THIS PROVIDES AN ENORMOUS OPPORTUNITY
13	FOR CIRM IN CALIFORNIA. THE QUESTION IS HOW VALID
14	ARE IPSC MODELS? BEN ADDRESSED SOME OF THAT.
15	THERE'S BEEN QUITE A BIT OF WORK THAT WE COULD MAYBE
16	DISCUSS IN FUTURE MEETINGS AROUND THIS. THE MACOSKO
17	LAB, CARLOTTO LAB, BRENNAND LAB AND OTHERS, TEMPLE
18	LAB, HAVE USED GENOMIC METHODS TRANSCRIPTOMIC
19	EPIGENETIC MARKS TO SHOW THAT IPSC-DERIVED NEURONAL
20	LINES AND GLIA LINES MODELS HUMAN NEURODEVELOPMENT
21	WITH RELATIVELY HIGH FIDELITY. THAT IS, THE EARLY
22	STAGES OF DEVELOPMENT. AND SO THEY REALLY PROVIDE
23	THIS ENORMOUS OPPORTUNITY.
24	I THINK JON THOMAS MENTIONED HOW CLOSE ARE
25	WE TO THERAPIES. I MEAN THE HUNDREDS OF IDENTIFIED
	82
	02

1	GENETIC RISK FACTORS PROVIDE AN UNBELIEVABLE
2	OPPORTUNITY FOR DIRECTED DEVELOPMENT OF
3	THERAPEUTICS. BUT TO DO THIS, YOU CAN'T STUDY
4	ONE
5	MS. DEQUINA-VILLABLANCA: YOUR THREE
6	MINUTES ARE UP.
7	DR. GESCHWIND: OKAY. TEN SECONDS.
8	HIGH THROUGHPUT IN VITRO MODELS ARE NEEDED
9	FOR THIS. SO THE IPSC MODELS FROM HUMAN CELLS
10	PROVIDE A UNIQUE OPPORTUNITY FOR THESE HIGH
11	THROUGHPUT STUDIES. SO I JUST WANTED TO REALLY
12	EMPHASIZE THAT. IT'S A GREAT OPPORTUNITY FOR CIRM,
13	AND I'M SO GLAD THAT WE ARE FOCUSING ON THIS NOW.
14	THANK YOU.
15	CHAIRMAN GOLDSTEIN: THANK YOU VERY MUCH,
16	DAN. OKAY. NEXT UP IS
17	MS. DEQUINA-VILLABLANCA: 310
18	(UNINTELLIGIBLE). IF YOU COULD PRESS 9 TO UNMUTE.
19	DR. BUTLER: THAT'S ACTUALLY MY PHONE
20	NUMBER, MY OFFICE PHONE NUMBER. SO IT WAS VERY
21	CONFUSING AS TO HOW THIS WAS GOING TO WORK.
22	SO MY NAME IS SAMANTHA BUTLER, AND I'M A
23	PROFESSOR IN THE NEUROBIOLOGY DEPARTMENT AT THE
24	DAVID GEFFEN SCHOOL OF MEDICINE AT UCLA WHERE I HOLD
25	THE ELEANOR LESLIE CHAIR IN PIONEERING BRAIN
	83

1	RESEARCH. AND MY STUDIES FOCUS ON THE DEVELOPMENT
2	AND REGENERATION OF SENSORY RELAY CIRCUITS IN THE
3	SPINAL CORD. SO I'D LIKE TO MAKE THE FOLLOWING
4	POINTS TO CONSIDER ABOUT HOW CIRM ALLOCATES THIS 1.5
5	BILLION IN NEUROSCIENCE FUNDING.
6	SO, FIRST, GIVEN THAT MANY NEUROLOGICAL
7	DISEASES AND SYNDROMES HAVE THEIR BASIS IN EARLY
8	DEVELOPMENT, IT IS ESSENTIAL TO FUND BASIC SCIENCE
9	AND THE MECHANISMS BY WHICH THESE NEURAL CIRCUITS
10	FIRST FORM IN THE BRAIN AND SPINAL CORD. GIVEN THE
11	FEDERAL REGULATIONS ON HUMAN EMBRYONIC AND STEM CELL
12	RESEARCH, FUNDING FROM CIRM IS CRITICAL FOR MAKING
13	ANY HEADWAY IN UNDERSTANDING WHAT POTENTIALLY HUMAN
14	SPECIFIC MECHANISMS THAT UNDERPIN OUR ABILITY TO
15	THINK, MOVE, AND FEEL.
16	SO SECOND, THIS RESEARCH NEEDS INSIGHT
17	FROM BOTH STEM CELL AND NEUROBIOLOGISTS. THE
18	NEUROSCIENTIST'S PERSPECTIVE HAS TOO OFTEN BEEN
19	MISSING AND IS URGENTLY NEEDED TO IMPROVE RIGOR.
20	IT'S NOT ENOUGH TO MAKE GENERIC EYE NEURONS FOR
21	CELLULAR REPLACEMENT STUDIES, FOR EXAMPLE, WITHOUT
22	THE NECESSARY KNOWLEDGE OF THE TYPE AND FUNCTION OF
23	THE NEURON BEING REPLACED. THESE STUDIES ARE LIKELY
24	TO FAIL WITHOUT THAT KNOWLEDGE.
25	SO THIRD AND FINALLY, PLEASE, PLEASE
	84

1	CONSIDER FUNDING A MECHANISM THAT INVESTS IN HIGH
2	RISK, HIGH REWARD STUDIES ON BASIC NEUROLOGICAL
3	MECHANISMS PERHAPS EVEN IN MODEL SYSTEMS. THE COSTS
4	ARE VERY SIGNIFICANTLY LESS THAN FUNDING
5	TRANSLATIONAL CLINICAL WORK AND LARGE-SCALE GENETIC
6	SURVEY STUDIES, FOR EXAMPLE. AND THESE ARE THE
7	STUDIES THAT HAVE HISTORICALLY GENERATED THE MOST
8	SURPRISING AND IMPORTANT BREAKTHROUGHS IN OUR
9	SCIENTIFIC UNDERSTANDING. NO ONE CAN PREDICT WHEN
10	AND WHERE THESE BREAKTHROUGHS WILL COME FROM, BUT
11	IT'S CRITICAL TO KEEP THIS PIPELINE OF RESEARCH
12	ALIVE AND VIBRANT. THANK YOU SO MUCH.
13	CHAIRMAN GOLDSTEIN: THANK YOU, DR.
14	BUTLER. VERY THOUGHTFUL AND PITHY.
15	LET'S SEE. NEXT UP. BEN NOVITCH.
16	DR. NOVITCH: HI. AND THANKS FOR THE
17	OPPORTUNITY TO SHARE MY THOUGHTS. SO MY NAME IS BEN
18	NOVITCH. I'M A PROFESSOR AT UCLA AND A MEMBER OF
19	OUR BROAD STEM CELL RESEARCH CENTER.
20	I'M SO EXCITED TO HEAR THE PRESENTATIONS
21	TODAY REALLY GIVING SOME FOCUS TO MENTAL HEALTH
22	DISORDERS AS SOMETHING THAT CIRM SHOULD GO AFTER.
23	AND WE KNOW THAT THE SCOPE IS AFFECTING MILLIONS OF
24	PEOPLE IN CALIFORNIA AND HALF A BILLION PEOPLE
25	ACROSS THE WORLD. AND WE KNOW VERY LITTLE ABOUT HOW

85

Г

1	TO TREAT THESE DISORDERS.
2	AND SO OUR ABILITY TO DEVELOP EFFECTIVE
3	THERAPY REALLY DEPENDS UPON OUR GETTING A BETTER
4	UNDERSTANDING OF THE INNER WORKINGS OF THE HUMAN
5	BRAIN AND THE PATH OF PHYSIOLOGICAL MECHANISMS
6	BEHIND THESE DISORDERS. THERE'S MANY QUESTIONS THAT
7	WE REALLY DON'T KNOW THE ANSWERS TO, INCLUDING WHEN,
8	WHERE, AND HOW DO MENTAL ILLNESSES BEGIN.
9	AND SO I JUST WANTED TO POINT OUT BY
10	REITERATING MY COLLEAGUE DR. BUTLER, THAT THE
11	CENTRAL NERVOUS SYSTEM IS ONE OF THE FIRST
12	STRUCTURES TO BE FORMED DURING A REGENESIS, AND A
13	LOT OF WHAT GOES WRONG CAN BE TRACED BACK TO
14	DEVIATIONS IN NORMAL DEVELOPMENT THAT CAN RESULT IN
15	NEUROLOGICAL DISORDERS THAT MANIFEST EARLY IN LIFE,
16	SUCH AS EPILEPSY AND AUTISM, BUT ALSO AT LATER
17	TIMES, SUCH AS SCHIZOPHRENIA. AND THE RECENT
18	STUDIES HAVE EVEN SHOWN THAT DISORDERS THAT WE
19	TRADITIONALLY VIEW AS ADULT ONSET, SUCH AS MOOD
20	DISORDERS AND NEURODEGENERATION, NEURODEGENERATIVE
21	CONDITIONS, CAN EMERGE AS A CONSEQUENCE OF
22	VULNERABILITIES THAT ARE CONVEYED EARLY IN LIFE.
23	AND MANY DISORDERS ARISE FROM GENETIC
24	VARIATIONS AS WE HEARD SO ELEGANTLY ABOUT TODAY AND
25	HOW THESE CAN AFFECT, IMPACT THE ASSEMBLY OR THE

86

1	FUNCTION OF NEURAL CIRCUITS FROM THE OUTSET OR
2	POTENTIALLY TO RAISE TO REVEAL THEMSELVES WHEN
3	COMBINED WITH ENVIRONMENTAL TRIGGERS SUCH AS TOXINS,
4	PATHOGENS, STRESS, AND TRAUMA. AND THIS IS
5	SOMETHING THAT WE HAVE REALLY VERY LITTLE
6	UNDERSTANDING OF AND SOMETHING THAT I THINK WE NEED
7	TO THINK ABOUT IN THE FUTURE IN TERMS OF GENE
8	ENVIRONMENT INTERACTIONS.
9	AND SO TO MEET THESE CHALLENGES, I THINK
10	THAT I WOULD LIKE TO URGE CIRM TO INCREASE SUPPORT
11	FOR THE FOLLOWING AREAS OF RESEARCH IN THE
12	NEUROSCIENCE PORTFOLIO, LEVERAGING ALL THE ADVANCES
13	WE'VE HEARD ABOUT WITH GENOMICS AS WELL AS DIRECTED
14	DIFFERENTIATIONS OF IPS CELLS AND ESTABLISHMENT OF
15	ORGANOID MODELS.
16	SO FIRST OF ALL, I THINK WE NEED TO SPEND
17	MORE WITH CHARACTERIZING THE BASIC MECHANISMS AND
18	UNIQUE FEATURES OF HUMAN DEVELOPMENT AND MATURATION
19	ACROSS THE LIFE SPAN.
20	I THINK SECOND, WE NEED TO DEFINE CELLULAR
21	AND INTRINSIC SORRY INTRINSIC AND
22	ENVIRONMENTAL INFLUENCE THAT GOVERN HEALTHY AND
23	MALADAPTIVE BRAIN DEVELOPMENT.
24	AND THIRD, WE NEED TO REALLY EXPAND THE
25	PIPELINE FOR CREATING MODELS FOR HUMAN
	87

1	NEURODEVELOPMENTAL AND NEUROPSYCHIATRIC DISEASES SO
2	THAT WE CAN IMPROVE OUR THERAPEUTIC DEVELOPMENT
3	PIPELINE AS WELL.
4	AS I THINK WE'VE HEARD ABOUT, WE HAVE A
5	FEW IPS MODELS FOR A FEW DISORDERS. WE NEED TO MAKE
6	THAT MANY MORE TO GET THE BREADTH OF THE HUMAN
7	POPULATION IN THESE MODELS.
8	THANKS FOR YOUR ATTENTION.
9	CHAIRMAN GOLDSTEIN: THANK YOU VERY MUCH,
10	DR. NOVITCH.
11	LARRY ZIPURSKY, YOU'RE UP.
12	DR. ZIPURSKY: I'M A PROFESSOR OF
13	BIOLOGICAL CHEMISTRY AT THE DAVID GEFFEN SCHOOL OF
14	MEDICINE AT UCLA. I SERVE AS CHAIR OF THE UCLA
15	NEUROSCIENCE THEME, WHICH PROMOTES INTERDISCIPLINARY
16	EFFORTS IN NEUROSCIENCE ACROSS CAMPUS AND BASIC TO
17	TRANSLATIONAL NEUROSCIENCE. AND I'M HERE TODAY TO
18	ENCOURAGE CIRM TO APPLY THE \$1.5 BILLION COMMITTED
19	TO ADDRESSING THE CHALLENGE OF MENTAL ILLNESS IN
20	CREATIVE AND IMPACTFUL WAYS TO REDUCE THE BURDEN OF
21	NEUROPSYCHIATRIC DISORDERS ON PATIENTS, FAMILIES,
22	AND OUR COMMUNITIES.
23	THE BRAIN IS THE MOST COMPLICATED ORGAN,
24	AND IT IS THIS COMPLEXITY THAT PRESENTS ENORMOUS
25	CHALLENGES TO UNDERSTANDING THE CAUSES OF MENTAL
	88

1	ILLNESS AND THE DEVELOPMENT OF THERAPIES FOR
2	EFFECTIVELY TREATING THEM. OUR BRAINS AND, INDEED,
3	WHO WE ARE REFLECT THE INTERACTIONS BETWEEN NATURE,
4	THE GENES WE INHERITED FROM OUR PARENTS, AND NURTURE
5	THE POWERFUL INFLUENCE OF THE ENVIRONMENT ON THE
6	DEVELOPMENT OF A CHILD'S BRAIN.
7	IT IS WELL DOCUMENTED THAT BOTH GENES AND
8	ADVERSE CHILDHOOD EXPERIENCES FROM FOOD INSECURITY
9	TO VIOLENCE IN OUR COMMUNITIES ARE MAJOR
10	DETERMINANTS OF MENTAL ILLNESS, NOT ONLY IN
11	CHILDREN, BUT PERSISTING THROUGHOUT ADULT LIFE.
12	PROGRESS IN UNDERSTANDING MENTAL ILLNESS
13	REQUIRES AN UNDERSTANDING OF HOW OUR CHILDREN'S
14	BRAINS DEVELOP. WHILE CONSIDERABLE PUBLIC AND
15	PRIVATE FUNDING HAS BEEN DEVOTED TO
16	NEURODEGENERATIVE DISORDERS AND UNDERSTANDING HOW
17	THE ADULT BRAIN WORKS, RESEARCH INTO HOW THE BRAIN
18	DEVELOPS AND THE ROLE OF GENES AND THE ENVIRONMENT
19	IN THIS PROCESS HAS BEEN BY COMPARISON POORLY
20	FUNDED. CIRM CAN FILL THIS VOID BY DEVELOPING
21	CREATIVE AND IMPACTFUL DISCOVERY, SCIENCE-BASED
22	INITIATIVES TO UNDERSTAND HOW THE HUMAN BRAIN
23	DEVELOPS. THIS WILL PROVIDE FOUNDATIONAL KNOWLEDGE
24	TO ADDRESS THE ROOT CAUSES OF MENTAL ILLNESS. THIS
25	IS AN ESSENTIAL STEP WITH USING STEM CELLS AND

89

1	ORGANOID-BASED TECHNOLOGIES TO CREATE APPROPRIATE
2	MODELS FOR UNDERSTANDING BRAIN DISORDERS AND FOR
3	USING THESE IN CREATIVE WAYS TO DEVELOP
4	THERAPEUTICS.
5	SO WHAT'S THE BEST WAY FORWARD TO
6	ACCOMPLISH THIS? I URGE CIRM TO CREATE COMPETITIVE
7	INITIATIVES IN DISCOVERY NEUROSCIENCE TO CHALLENGE
8	THE EXTRAORDINARY SCIENTISTS AT THE MANY SUPERB
9	PUBLIC AND PRIVATE INSTITUTIONS IN CALIFORNIA TO
10	PROPOSE AMBITIOUS, CREATIVE, AND TRANSFORMATIONAL
11	RESEARCH PROGRAMS TO UNDERSTAND HOW THE HUMAN BRAIN
12	DEVELOPS. AREAS OF FOCUS SHOULD NOT BE
13	PROSCRIPTIVE. IT SHOULD TAKE ADVANTAGE OF THE
14	BREADTH OF SCIENTIFIC EXPERTISE AND RESEARCH
15	EXCELLENCE AT OUR CALIFORNIA INSTITUTIONS.
16	INDEED, A BROAD INITIATIVE BRINGING
17	TOGETHER GENETICISTS, BIOCHEMISTS, CELL AND
18	DEVELOPMENTAL BIOLOGISTS, AND NEUROSCIENTISTS TO
19	TACKLE THE MECHANISTIC BASIS OF BRAIN DEVELOPMENT
20	WOULD BE A BOLD, TRANSFORMATIONAL STEP IN
21	CONFRONTING THE CHALLENGES OF MENTAL ILLNESS. THANK
22	YOU.
23	CHAIRMAN GOLDSTEIN: THANK YOU, LARRY.
24	VERY THOUGHTFUL.
25	I'LL JUST POINT OUTRIGHT NOW, TAKING
	90

1	CHAIR'S PREROGATIVE, THAT THE CONCEPT PLAN THAT ROSA
2	DESCRIBED IS ACTUALLY A GREAT WAY TO START DELVING
3	INTO THOSE AREAS BECAUSE IT'S DESIGNED TO GET
4	MULTIDISCIPLINARY TEAMS TOGETHER.
5	NEXT, DR. CHEN.
6	DR. CHEN: HI. I'M PATRICK CHEN. AND I'M
7	ADJUNCT ASSISTANT PROFESSOR AT UCLA, THE DEPARTMENT
8	OF PSYCHIATRY. AND I WORK ON KIND OF UNDERSTANDING
9	THE MECHANISMS BY WHICH GENETIC VARIATION LEADS TO
10	BEHAVIORAL VARIATION. I MEAN I DON'T HAVE AS MUCH
11	TO ADD. I THINK EVERYONE, ALL OF MY COLLEAGUES,
12	HAVE SAID A LOT MORE ELOQUENTLY THAN I CAN SAY. BUT
13	I JUST WANTED TO EMPHASIZE THAT I THINK IT'S, TO ME
14	AT LEAST, IT SEEMS IMPORTANT THAT WE SHOULD REALLY
15	WORK TO KIND OF JOIN THE GREAT LABS AND CAMPUSES IN
16	BOTH GENETICS AND IN NEUROSCIENCE ACROSS CALIFORNIA
17	AND ENCOURAGE THAT SORT OF COLLABORATION THAT LARRY
18	JUST MENTIONED.
19	I THINK THAT IT'S REALLY IMPORTANT THAT WE
20	IN INVEST IN NEW STRATEGIES TO TURN GENETIC
21	DISCOVERIES INTO UNDERSTANDING OF MECHANISM, AND
22	SPECIFICALLY NEUROMECHANISMS.
23	I THINK WE NEED NEW APPROACHES TO LEARN
24	HOW THE GENES WILL BE IDENTIFIED, CONTRIBUTE TO THE
25	RISK OF MENTAL ILLNESSES, AND THAT CAN ONLY REALLY
	91

1	BE ACCOMPLISHED BY REALLY MARRYING THE FIELDS OF
2	GENETICS AND NEUROSCIENCE. AND I THINK, FROM MY
3	PERSPECTIVE, WE ALSO SHOULDN'T REALLY FORGET THAT
4	BEHAVIOR IS A REALLY IMPORTANT COMPONENT OF THIS.
5	AND REALLY UNDERSTANDING HOW DO WE GET FROM SEQUENCE
6	ARE VARIANTS, DNA SEQUENCE VARIANTS TO BEHAVIORAL
7	VARIATION AND ALL THE LAYERS IN BETWEEN, I FEEL LIKE
8	THERE REALLY SHOULD BE A FOCUS ON UNDERSTANDING
9	THINGS. AND ONE OF THESE NEW APPROACHES THAT HASN'T
10	REALLY BEEN EXPLORED AS MUCH AS IT COULD BE IS
11	REALLY TAKING FROM A BEHAVIOR PERSPECTIVE AND
12	WORKING FROM THERE.
13	AND I THINK REALLY JUST EMPHASIZING THAT
14	WE DO NEED AN EFFICIENT, COLLABORATIVE APPROACH
15	BETWEEN THE GENETICISTS AND NEUROSCIENTISTS AND
16	EVERYTHING IN BETWEEN WOULD BE REALLY USEFUL. THANK
17	YOU.
18	CHAIRMAN GOLDSTEIN: TERRIFIC. THANK YOU,
19	DR. CHEN.
20	JONATHAN, SHORT PLEASE, BECAUSE WE ARE
21	RIGHT UP AGAINST THE END TIME.
22	DR. SEBAT: I DON'T WANT TO TAKE ANY TIME
23	AWAY FROM PUBLIC COMMENT. I JUST WANTED PATRICK
24	DEFINITELY HIGHLIGHTS AN IMPORTANT POINT, WHICH IS
25	THAT THE BEHAVIOR AND COGNITION ELEMENTS WOULD BE
	92

1	REALLY VALUABLE TO HAVE. IF YOU'RE DOING IF
2	YOU'RE MAKING HUMAN-DERIVED MODELS, WHERE ARE THE
3	HUMAN PHENOTYPES? SO THERE ARE COGNITIVE BATTERIES
4	THAT HAVE BEEN DEVELOPED THAT CAPTURE A RANGE OF
5	COGNITIVE TRAITS THAT ARE RELATED TO CIRCUITS. SO
6	IT IS FEASIBLE.
7	IF THERE IS GOING TO BE NEW RECRUITMENT OF
8	PATIENTS, IT IS QUITE FEASIBLE TO DO COGNITIVE
9	CHAIRMAN GOLDSTEIN: GREAT. THANK YOU
10	VERY MUCH. SO WE'RE RIGHT UP, ACTUALLY WE'RE A
11	COUPLE MINUTES LATE.
12	MR. TOCHER: LARRY, SORRY TO INTERRUPT. I
13	DO HAVE JUST A THERE ARE A COUPLE COMMENTERS WHO
14	SUBMITTED WRITTEN COMMENTS THAT I'VE BEEN ASKED TO
15	READ.
16	DR. GASSON: I THINK 5193 WAS NEXT IN
17	LINE. I DON'T KNOW WHERE IT WENT.
18	MS. DEQUINA-VILLABLANCA: I DON'T SEE ANY
19	ADDITIONAL HANDS UP, RAISED. GO AHEAD, SCOTT.
20	UNIDENTIFIED SPEAKER: I THINK IT WAS
21	NELSON FARMER WHO WAS HAVING DIFFICULTY UNMUTING
22	FROM HIS PHONE.
23	MR. TOCHER: OKAY. WELL, LET ME PROCEED
24	WITH THESE OTHERS WHILE WE WORK THAT OUT.
25	FROM DR. CARRIE BEARDEN OF UCLA, A
	93
	55

1	PROFESSOR OF THE DEPARTMENTS OF PSYCHIATRY AND
2	BIOBEHAVIORAL SCIENCES AND PSYCHOLOGY, SAYS, "I
3	WOULD LIKE TO STRONGLY ADVOCATE FOR CIRM FUNDING TO
4	BE USED FOR RESEARCH ON MENTAL HEALTH AND
5	NEURODEVELOPMENTAL DISORDERS. IN PARTICULAR, RARE
6	NEUROGENETIC DISORDERS WITH LARGE EFFECTS ON
7	NEUROPSYCHIATRIC PHENOTYPES HAVE STRONG POTENTIAL TO
8	INFORM OUR UNDERSTANDING OF BROADER DISEASE
9	MECHANISMS AND CAN BE READILY MODELED IN
10	EXPERIMENTAL SYSTEMS SUCH AS MANIPULATION OF GENETIC
11	BACKGROUND IN THE CONTEXT OF LARGE EFFECT MUTATIONS
12	WHICH CAN PROVIDE VALUABLE INSIGHTS."
13	NEXT, "MY NAME IS NELSON FRAMER. I'M A
14	PROFESSOR OF PSYCHIATRY AND HUMAN GENETICS AT UCLA
15	FOR THE PAST TEN YEARS. I HAVE ALSO SERVED AS
16	DIRECTOR OF UCLA'S DEPRESSION GRAND CHALLENGE. I
17	WAS AN AUTHOR OF THE UCLA/UCSF WHITE PAPER THAT
18	SEVERAL OF THE TASK FORCE MEMBERS HAVE ALREADY
19	ALLUDED TO, AND THAT CALLED FOR CIRM TO MOUNT A
20	MANHATTAN PROJECT FOR MENTAL HEALTH DISORDERS
21	STARTING WITH STUDIES OF DIVERSE COHORTS TO IDENTIFY
22	THE GENETIC VARIATIONS AND SOCIAL AND ENVIRONMENTAL
23	FACTORS THAT CONTRIBUTE TO DISEASE RISK.
24	"I WISH TO EMPHASIZE THAT, WHILE OUR
25	CAMPUSES ARE PARTICULARLY COMMITTED TO SUCH AN
	94

1	ENDEAVOR, WE ARE CERTAIN THAT INVESTIGATORS WITH
2	RELEVANT EXPERTISE AT INSTITUTIONS THROUGHOUT THE
3	STATE, BOTH WITHIN UC AND OUTSIDE OF IT, WILL BE
4	EXCITED TO COLLABORATE. CENTRAL MOTIVATION PROVOKE
5	MY OWN RESEARCH AND THE DEPRESSION GRAND CHALLENGE
6	OVERALL IS THE BELIEF THAT THE GENERATION OF NEW
7	KNOWLEDGE MUST FOCUS ON AND ENGAGE THE COMMUNITIES
8	THAT HAVE HAD THE LEAST ACCESS TO MENTAL HEALTH CARE
9	AND THAT DISPROPORTIONATELY BEAR THE BURDEN OF
10	MENTAL HEALTH DISORDER, NOT JUST AS PARTICIPANTS IN
11	NEW CIRM-FUNDED RESEARCH, BUT AS INTEGRAL PARTNERS
12	IN PLANNING AND CARRYING OUT THIS WORK. ONLY BY
13	DOING SO CAN WE DECREASE RATHER THAN INCREASE
14	CURRENT INEQUITIES.
15	"THUS, WHILE I COMMEND CIRM FOR COMMITTING
16	ITS CONSIDERABLE RESOURCES TO ADVANCING RESEARCH IN
17	NEUROPSYCHIATRIC DISORDERS, I URGE YOU TO FOCUS
18	ESPECIALLY ON STUDIES THAT WILL ADVANCE OUR
19	KNOWLEDGE OF THE GENETIC VARIATIONS THAT
20	SPECIFICALLY CONTRIBUTE TO DISEASE RISK IN THE
21	DIVERSE POPULATIONS THAT HAVE BEEN IGNORED BY
22	BIOMEDICAL SCIENCE, BUT THAT REPRESENT THE MAJORITY
23	OF THE POPULATION OF OUR STATE.
24	"WE NOW HAVE THE TOOLS TO MAKE
25	TRANSFORMATIVE ADVANCES, AND I'M CERTAIN WE'LL BE
	95

2 3	QUICKLY ABLE TO BRING TOGETHER THE INVESTIGATORS,
3	CLINICIANS, AND COMMUNITIES THROUGHOUT THE STATE
	THAT WILL ENABLE US TO DO SO."
4	AND THEN BEAR WITH ME, ONE LAST COMMENT.
5	I'LL GET THROUGH THIS AS QUICKLY AS I CAN. IT'S TWO
6	PAGES LONG, BUT I'LL GET THROUGH AS MUCH AS I CAN IN
7	THREE MINUTES.
8	"DEAR DR. GOLDSTEIN AND MEMBERS OF THE
9	BOARD, THANK YOU FOR THIS OPPORTUNITY AND YOUR
10	VISIONARY LEADERSHIP. THIS IS ON BEHALF OF BALJIC
11	(PHONETIC) KECK, PROFESSOR OF PHYSIOLOGY AND
12	NEUROSCIENCE AT THE DAVID GEFFEN SCHOOL OF MEDICINE
13	AT UCLA, AND NICOLA ALLEN, AN ASSOCIATE PROFESSOR OF
14	NEUROSCIENCE AT THE SALK.
15	"TODAY WE ARE ADVOCATING ON BEHALF OF THE
16	\$1.5 BILLION CIRM BUDGET BE ASSIGNED TO THE STUDY
17	OF THAT ONE-HALF OF THAT BUDGET BE ASSIGNED TO
18	THE STUDY OF NONNEURONAL CELLS OF THE BRAIN. THE
19	RANGE OF HUMANS AND OTHER VERTEBRATES COMPRISE TWO
20	MAJOR CELL POPULATIONS, NEURONS AND NONNEURONAL
	CELLS THAT CO-EVOLVED OVER 600 MILLION YEARS. THESE
21	CELLS WERE DISCOVERED AROUND 140 YEARS AGO.
21 22	
21 22 23	HOWEVER, FOR THE LAST 60 YEARS, MOST OF THE EFFORT
21 22 23 24	HOWEVER, FOR THE LAST 60 YEARS, MOST OF THE EFFORT HAS BEEN DEVOTED TO THE STUDY OF NEURONS BECAUSE OF
18 19 20	RANGE OF HUMANS AND OTHER VERTEBRATES COMPRISE T MAJOR CELL POPULATIONS, NEURONS AND NONNEURONAL CELLS THAT CO-EVOLVED OVER 600 MILLION YEARS. T CELLS WERE DISCOVERED AROUND 140 YEARS AGO.

96

1	MOST TECHNICALLY FEASIBLE AND SIMPLEST TO STUDY.
2	"THE NONNEURONAL CELLS THAT REPRESENT 50
3	PERCENT OF THE CELLS OF THE BRAIN HAVE BEEN LARGELY
4	UNDERSTUDIED. THUS, AT A BASIC LEVEL, OUR
5	UNDERSTANDING OF BRAIN DISEASES IS LIMITED BECAUSE
6	WE SIMPLY DON'T KNOW ENOUGH ABOUT HALF OF THE BRAIN.
7	IN THE CANCER REALM, IT'S LIKE TRYING TO TREAT
8	TUMORS WHILE IGNORING THE VARIOUS TISSUE
9	ENVIRONMENTS IN WHICH THEY RESIDE AND UPON WHICH
10	THEY DEPEND. WE ALL KNOW THIS WOULD NEVER WORK.
11	"IN THE SAME WAY, IF WE ARE SERIOUS ABOUT
12	UNDERSTANDING AND TREATING BRAIN DISEASES, THEN WE
13	MUST BE SERIOUS ABOUT UNDERSTANDING HALF OF THE
14	CELLS THAT HAVE BEEN IGNORED AND WE MUST INVEST IN
15	THIS AREA NOW.
16	"THE LAST FEW YEARS HAVE SHOWN NONNEURONAL
17	CELLS CONTRIBUTE TO TRAUMATIC BRAIN INJURY, VIRAL
18	INFECTION, TUMORS, NEURODEGENERATION, AND
19	PSYCHIATRIC DISEASES. THE EVIDENCE TO SUPPORT THIS
20	VIEW COMES FROM NEUROPATHOLOGICAL STUDIES,
21	POSTMORTEM TISSUE ANALYSIS, STEM CELL REPLACEMENT
22	STRATEGIES, AND FROM GENETIC ANALYSES OF KNOWN AND
23	CAUSATIVE GENES FOR HUMAN DISEASES.
24	"THE EVIDENCE THAT NONNEURONAL CELLS
25	CONTRIBUTE TO ALMOST ALL BRAIN DISEASES AND THAT
	97

1	THEY ARE ESSENTIAL FOR SUCCESSFUL STEM CELL
2	THERAPIES IS SIMPLY OVERWHELMING. A NEW OPPORTUNITY
3	THEREFORE EMERGES TO IDENTIFY AND DEVELOP NEW
4	THERAPEUTIC STRATEGIES. SCIENTISTS IN CALIFORNIA
5	ARE POISED TO TAKE ADVANTAGE OF THIS NEW
6	OPPORTUNITY, HAVING MADE MANY OF THE INITIAL
7	BREAKTHROUGHS.
8	"HOW SHOULD WE MOVE FORWARD? SINCE HALF
9	OF THE CELLS IN THE HUMAN BRAIN ARE NONNEURONAL, WE
10	SUGGEST THAT HALF OF THE FUNDS BE DEDICATED TO THEIR
11	STUDY IN HEALTH AND DISEASE. THIS COULD BE ACHIEVED
12	THROUGH CURATED RFA'S TO STUDY NONNEURONAL CELLS IN
13	NEUROLOGICAL OR PSYCHIATRIC DISEASES.
14	ALTERNATIVELY, AND MORE EFFICIENTLY, IT COULD BE
15	ACHIEVED BY THE FORMATION OF A HIGHLY CONNECTED
16	CENTER WITHOUT WALLS OF RESEARCHERS DEDICATED TO
17	THIS EFFORT AND DRAWING FROM ALL OF CALIFORNIA AND
18	WORKING AT MULTIPLE LOCATIONS IN UNIVERSITIES,
19	HOSPITALS, THE COMMUNITY, AND THE PRIVATE SECTOR.
20	IF THIS VISION COULD BE ACHIEVED, IT WOULD BE A
21	WORLD FIRST FOR HOW MODERN AND IMPACTFUL
22	COLLABORATIVE WORK SHOULD BE DONE.
23	"WE URGE YOU TO EARMARK HALF OF THE CIRM
24	FUNDS TO STUDY THE HALF OF THE BRAIN THAT HAS BEEN
25	IGNORED

1	MS. DEQUINA-VILLABLANCA: TIME. THREE
2	MINUTES IS UP, SCOTT.
3	MR. TOCHER: AND THAT'S IT.
4	CHAIRMAN THOMAS: OKAY. GREAT. I'M GOING
5	TO TRY TO ADJOURN US AGAIN. LET ME THANK ESPECIALLY
6	DR. JONATHAN SEBAT AND DR. BENJAMIN NEALE. YOU GUYS
7	HAVE GIVEN US A LOT TO THINK ABOUT AND WHAT SEEMS
8	LIKE PLENTY OF TRACTION TO MOVE INTO THE MODELING OF
9	THESE DISORDERS. SO THANK YOU VERY MUCH FOR YOUR
10	TIME. THANK YOU TO ALL THE COMMENTERS AND THANK YOU
11	TO TASK FORCE MEMBERS WHO HAVE BEARED WITH US FOR
12	TEN MINUTES PAST TIME.
13	SO LET ME ADJOURN US. THANK YOU ALL.
14	(THE MEETING WAS THEN CONCLUDED AT 12:09 P.M.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	QQ

REPORTER'S CERTIFICATE

I, BETH C. DRAIN, A CERTIFIED SHORTHAND REPORTER IN AND FOR THE STATE OF CALIFORNIA, HEREBY CERTIFY THAT THE FOREGOING TRANSCRIPT OF THE VIRTUAL PROCEEDINGS BEFORE THE TASK FORCE ON NEUROSCIENCE OF THE INDEPENDENT CITIZEN'S OVERSIGHT COMMITTEE OF THE CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE IN THE MATTER OF ITS REGULAR MEETING HELD ON MARCH 13, 2023, WAS HELD AS HEREIN APPEARS AND THAT THIS IS THE ORIGINAL TRANSCRIPT THEREOF AND THAT THE STATEMENTS THAT APPEAR IN THIS TRANSCRIPT WERE REPORTED STENOGRAPHICALLY BY ME AND TRANSCRIBED BY ME. I ALSO CERTIFY THAT THIS TRANSCRIPT IS A TRUE AND ACCURATE RECORD OF THE PROCEEDING.

BETH C. DRAIN, CA CSR 7152 133 HENNA COURT SANDPOINT, IDAHO (208) 920-3543

100